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ABSTRACT

Recent work by some of the authors presented a novel construction of a multiresolution analysis on manifolds
and graphs, acted upon by a given symmetric Markov semigroup {T t}t≥0, for which T t has low rank for large t.1

This includes important classes of diffusion-like operators, in any dimension, on manifolds, graphs, and in non-
homogeneous media. The dyadic powers of an operator are used to induce a multiresolution analysis, analogous
to classical Littlewood-Paley14 and wavelet theory, while associated wavelet packets can also be constructed.2

This extends multiscale function and operator analysis and signal processing to a large class of spaces, such
as manifolds and graphs, with efficient algorithms. Powers and functions of T (notably its Green’s function)
are efficiently computed, represented and compressed. This construction is related and generalizes certain Fast
Multipole Methods,3 the wavelet representation of Calderón-Zygmund and pseudo-differential operators,4 and
also relates to algebraic multigrid techniques.5 The original diffusion wavelet construction yields orthonormal
bases for multiresolution spaces {Vj}. The orthogonality requirement has some advantages from the numerical
perspective, but several drawbacks in terms of the space and frequency localization of the basis functions. Here
we show how to relax this requirement in order to construct biorthogonal bases of diffusion scaling functions
and wavelets. This yields more compact representations of the powers of the operator, better localized basis
functions. This new construction also applies to non self-adjoint semigroups, arising in many applications.

Keywords: Biorthogonal wavelets, Laplace-Beltrami operator, graph Laplacian, multiscale analysis on mani-
folds.

1. INTRODUCTION

In the companion paper we discuss novel approaches for multiscale analysis on manifolds and graphs.7 There
we divide the approaches into two categories, bottom-up and top-bottom, and discuss a novel top-bottom con-
struction leading to local cosines on a manifold or graph.

In this paper we discuss in detail a novel bottom-up construction that generalize orthogonal diffusion
wavelets,1 leading to biorthogonal diffusion wavelets. In order to perform multiscale analysis on a manifold
or graph, one would like to define dilations, that induce scales and scaling spaces, and to be able to interpret
them both spatially and in terms of “frequency”. One would also like to define some sub-sampling rule in order
to “critically sample” each of the scaling spaces: the number of atoms at each scale should be smaller the coarser
the scale, but in some sense still be “enough” to represent faithfully any function “at that scale”. Finally, one
would also like to be able to efficiently compute and represent the constructed multiscale structure, in terms of
filters that allow to encode each scale in terms of the previous scale, and to efficiently analyse and reconstruct
functions in terms of the constructed scaling function and wavelets.

A novel framework for multiscale analysis on manifolds and graph was recently introduced,1 that greatly
generalizes wavelet analysis to manifolds and graphs, and even more general spaces, and coherently addresses
the issues above. It is related to a circle of ideas centered around the use of diffusion operators on manifolds,
graphs, and general data sets.8–13

As far as dilations are regarded, the main idea is to shift the attention from the geometry of the space to the
geometry of certain families of functions on the space.1, 14 Instead of considering groups (or semigroups) acting
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Figure 1. Spectra of powers of T and corresponding multiscale eigenspace decomposition. One can think of the horizontal
axis as either indexing the eigenvalues of T and its powers, or indexing the corresponding eigenspaces.

geometrically on the space (such as Euclidean dilations, or rotations, or more general geometric transformations),
the focus is on “dilation” operators acting on functions on the space. The key ingredient becomes a diffusion
semigroup {T t}t≥0 with generator T , for example the heat semigroup on a manifold or graph (see the companion
paper for the relevant standard definitions7). The operator T and its powers act on functions f by diffusing
them. When {T t} is the heat semigroup, one can think of T tf as the distribution of heat at time t, starting with
the initial heat distribution f at time t = 0. In many examples of great interest the spectrum of T is decaying.
Hence for any pre-specified precision ǫ, the effective rank of T t decreases with t, see Figure 1. We define the
multiresolution subspaces Vj as the effective rank, up to precision ǫ, of T 2j−1. This corresponds to a dyadic
sampling of scales.

Given an initial highly localized orthonormal basis Φ0 for the whole space (e.g., in the discrete case, Dirac

δ-functions at each point of the space), we let Vj be the span of T 2j−1Φ0. From the frequency point of view, Vj

is approximately the span of the eigenfunctions corresponding to the eigenvalues λ such that λ2j−1 ≥ ǫ, which
are a set of “low-frequency” eigenfunctions, at least when smaller eigenvalues correspond to higher frequency
eigenfunctions. We think of the set of functions T 2j−1Φ0 as a set of smooth bump functions at scale j. These
functions are in general highly overlapping. They are like the scaling functions in a wavelet pyramid with no
downsampling. We enforce downsampling by constructing an orthonormal basis Φj , whose elements are (square-

integrable) linear combinations of bumps T 2j−1Φ0, and whose span, up to precision ǫ, is Vj . The cardinality of

this orthonormal basis is equal to the ǫ-rank of T 2j−1, and hence in general it is much smaller than the cardinality
of the set of bumps T 2j−1Φ0. This construction can be performed in a multiscale fashion by representing, at scale
j, T 2j

onto Φj , considering the set of bumps T 2j

Φj and downsampling and orthonormalizing them to obtain
Φj+1.

In Section 2 we review the original construction of orthogonal diffusion wavelets.

In Section 3 we present the generalization of this construction to the biorthogonal case.

In Section 4 we discuss three examples illustrating the new construction.

2. ORTHOGONAL DIFFUSION WAVELETS

We refer the reader to the companion paper7 for relevant background and standard definitions of the Laplacian
on a manifold or graph, and the corresponding heat kernel, as well as a summary of the original construction
of orthogonal diffusion wavelets There are three key ingredients in the construction of orthonormal diffusion
wavelets.1 First of all the idea to use the diffusion on the manifold or graph to introduce a notion of scales.
Secondly a way of enforcing critical downsampling at each scale through a numerical constraint. Thirdly, an
orthogonalization scheme that rather efficiently allows the computation of orthonormal, critically sampled bases
at each scale.



In this section we present a particular case of our construction in a finite, discrete setting, for which only
finite dimensional linear algebra is needed, and refer to the paper for the general construction.1

2.1. Setting and Assumptions

We consider a finite weighted graph7, 15 X (which could be discretization of a compact manifold) and a symmetric
positive definite and positive “diffusion” operator T on (functions on) X. In this paper we will consider the case
T = e−ǫL, or T = I − ǫL, where ǫ is a parameter, small and positive.

We assume that T is compact and self-adjoint, with spectrum λ0 = 1 ≥ λ1 ≥ . . . λj ≥ . . . (that accumulates
only at 0) and corresponding eigenvectors ξ0, ξ1, . . . , ξj , . . . . We remark that the assumption that T is self-adjoint
is not necessary, but simplifies the presentation. We also assume that T is local in the sense that if f has small
support, Tf also has small support containing the support of f . Here and in all that follows, support should
be understood as “numerical support”. Moreover we assume that T is smoothing, and hence the numerical
rank of powers of T decreases: see Figure 1. Ideally there exists a γ < 1 such that for every j ≥ 0 we have
Ranǫ(T

2j

) < γ Ranǫ(T
2j−1

), where Ranǫ denotes the ǫ-numerical rank,1 i.e. the number of singular values of

T 2j−1

above ǫ.

We will compute and describe efficiently the powers T 2j

, for j > 0, which encode the long term behavior
of the diffusion. We can interpret them as dilations acting on functions. We will define a multiresolution
analysis associated with these dilations, and show how to construct orthonormal bases for the subspaces in the
multiresolution analysis.

Some notation: here and in the rest of the paper we will use the notation [L]B2

B1
to indicate the matrix

representing the linear operator L with respect to the basis B1 in the domain and B2 in the range. A set of
vectors B1 represented on a basis B2 will be written in matrix form [B1]B2

or [I]B2

B1
(with slight abuse of notation),

where the columns of [B1]B2
are the coordinates of the vectors B1 in the coordinates B2. We are not requiring

that B1 and B2 span the same subspace. The notation is well-defined when 〈B1〉 ⊆ 〈B2〉; when this is not the
case we will explicitly define the meaning on a case-by-case basis.

2.2. Definition of the Multiresolution

By interpreting T as a dilation acting on functions in L2(X,µ), we will define a natural multiresolution structure
on X. First, we discretize the semigroup by letting tj = 2j − 1 and defining

σj = {λ ∈ σ(T ) : λtj ≥ ǫ}.

for a given precision ǫ. The set σj is the part of the spectrum of T tj above the precision ǫ; in essence, it is the
“low-pass” portion of the spectrum. We now define subspaces Vj by:

Vj = span({ξj : λj ∈ σj(T )}).

Clearly, the sets Vj satisfy the basic properties of a multiresolution analysis:

1. · · · ⊂ Vj ⊂ Vj−1 . . . ⊂ V1 ⊂ V0 = L2(X)

2. limj→∞ Vj = span({ξi : λi = 1})

3. {ξj : λj ∈ σj} is an orthonormal basis for Vj

The spaces Vj are adapted to the diffusion semigroup {T t}t. Essentially Vj is spanned by the low frequency
eigenfunctions of T tj , where low-frequency simply means eigenvalue close to 1. In fact, in the case of the heat
operator, this does correspond to a natural notion of frequency.7 We can also interpret Vj as the significant
low-pass portion of the spectrum of T tj , in the sense that T tj applied to any eigenvector outside of Vj yields a
result “below precision.”

We define the wavelet spaces Wj , j ≥ 0, as the orthogonal complement of Vj+1 in Vj so that

Vj = Vj+1 ⊕
⊥ Wj
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Figure 2. Diagram for downsampling, orthogonalization and operator compression. (All triangles are commutative by
construction)

The subspaces Vj have decreasing (finite) dimension, depending on the decay of the spectrum of T . Ideally,
we will have

dim(Vj) ≤ Cǫ2
−αj

where Cǫ is a constant depending on the precision ǫ. The bases of eigenfunctions for the spaces Vj are, in
general, highly nonlocal. The goal of both the orthogonal diffusion wavelet and biorthogonal diffusion wavelet
constructions is to build localized smooth bases for the subspaces Vj .

2.3. Construction of the Multiresolution

We start by fixing a precision ǫ > 0; we assume that T is self-adjoint and is represented on the basis Φ0 = {δk}k∈X ,
and consider the columns of T , which can be interpreted as the set of functions Φ̃1 = {Tδk}k∈X on X. We refer
the reader to the diagram in Figure 2 for a visual representation of the scheme presented. We use a local
multiscale orthogonalization procedure1 to orthonormalize these columns and obtain a basis Φ1 = {ϕ1,k}k∈X1

(X1 is defined as this index set), written with respect to the basis Φ0. This basis spans the range of T , which
we denoted by V1, up to precision ǫ, and is stored in the sparse matrix [Φ1]Φ0

. Essentially Φ1 is a basis for
the subspace V1 which is ǫ-close to the range of T , and with basis elements that are well-localized. Moreover,
the elements of Φ1 are coarser than the elements of Φ0, since they are the result of applying the “dilation”
T once. Clearly |X1| ≤ |X|, but this inequality may already be strict since the numerical range of T may be
approximated, within the specified precision ǫ, by a subspace of smaller dimension. Whether this is the case or
not, we have the sparse matrix [T ]Φ1

Φ0
, representing an ǫ-approximation of T with respect to Φ0 in the domain

and Φ1 in the range. We can also represent T in the basis Φ1: we denote this matrix by [T ]Φ1

Φ1
. We can square

this operator to obtain the dilation bringing us to the next scale: [T 2]Φ1

Φ1
= [Φ1]Φ0

[T 2]Φ0

Φ0
[Φ1]

T
Φ0

= [T ]Φ1

Φ0
([T ]Φ1

Φ0
)∗

(the last equality holds only when T is self-adjoint, and it is the only place where we use self-adjointness).

We now proceed by looking at the columns of [T 2]Φ1

Φ1
, which are Φ̃2 = {[T 2]Φ1

Φ1
δk}k∈X1

i.e. {T 2ϕ1,k}k∈X1
up

to the precision ǫ. Applying a local orthonormalization procedure yields an orthonormal basis Φ2 = {ϕ2,k}k∈X2

for the range of T 2
1 up to precision ǫ. Observe that Φ2 is naturally written with respect to the basis Φ1, and

hence encoded in the matrix [Φ2]Φ1
, which plays the role of a low-pass filter, very much like the coefficients of a

coarse scaling function onto the basis of scaling functions at the previous scale do. Moreover, depending on the
decay of the spectrum of T , |X2| is in general a fraction of |X1|. The matrix [T 2]Φ2

Φ1
is then of size |X2| × |X1|,

and the matrix [T 4]Φ2

Φ2
= [T 2]Φ2

Φ1
([T 2]Φ2

Φ1
)∗, a representation of T 4 acting on Φ2, is of size |X2| × |X2|.

After j steps in this fashion, we will have a representation of T 2j

onto a basis Φj = {ϕj,k}k∈Xj
, encoded

in a matrix Tj := [T 2j

]
Φj

Φj
. The orthonormal basis Φj is represented with respect to Φj−1, and encoded in the

matrix [Φj ]Φj−1
. We let Φ̃j = TjΦj We can represent the next dyadic power of T on Φj+1 on the range of T 2j

.
Depending on the decay of the spectrum of T , we expect |Xj | << |X|, in fact in the ideal situation the spectrum
of T decays fast enough so that there exists γ < 1 such that |Xj | < γ|Xj−1| < · · · < γj |X|. This corresponds to
downsampling the set of columns of dyadic powers of T , thought of as vectors in L2(X). The hypothesis that
the rank of powers of T decreases guarantees that we can downsample and obtain coarser and coarser lattices in
this spaces of columns.



While Φj is naturally identified with the set of Dirac δ-functions on Xj , we can extend these functions living
on the “compressed” (or “downsampled”) graph Xj to the whole initial graph X by writing

[Φj ]Φ0
= [Φj ]Φj−1

[Φj−1]Φj−2
= · · · = [Φj ]Φj−1

[Φj−1]Φj−2
· · · · · [Φ1]Φ0

[Φ0]Φ0
. (1)

Since every function in Φ0 is defined on X, so is every function in Φj . Hence any function on the compressed
space Xj can be extended naturally to the whole X. In particular, one can compute low-frequency eigenfunctions

on Xj in compressed form, and then extend them to the whole X. The elements in Φj are at scale T 2j+1−1,
and are much coarser and “smoother”, than the initial elements in Φ0, which is way they can be represented
in compressed form. The projection of a function onto the subspace spanned by Φj will be by definition an
approximation to that function at that particular scale.

Orthonormal bases of wavelets spanning the orthogonal complement of Vj+1 into Vj can also be constructed.

One can easily compute the scaling function and wavelet transform in a way that is completely analogous to
the classical Euclidean transforms. Suppose we are given f on X and want to compute 〈f, ϕj,k〉 for all scales j

and corresponding “translations” k. Being given f means we are given (〈f, ϕ0,k〉)k∈X . Then we can compute

(〈f, ϕ1,k〉)k∈X1
= [Φ1]Φ0

(〈f, ϕ0,k〉)k∈X , and so on for all scales. The sparser the matrices [Φj ]Φj−1
(and [T ]

Φj

Φj
),

the faster this computation. This generalizes the classical scaling function transform. We will show later that
wavelets can be constructed as well, and that a fast wavelet transform is also possible.

As discussed in the paper,1 these scaling function and wavelet bases have several of the typical properties
that wavelets have in the Euclidean setting. They are well-localized in space, as well as in frequency. This
means that the expansion of a wavelet in terms of the eigenfunctions of the operator T is well-localized at the
corresponding scale. As a consequence they have vanishing moments, in the sense that wavelets at each scale are
orthogonal to several low-frequency eigenfunctions. Also, having a compressed representation of dyadic powers
of T , allow the efficient and precise computation of T kf , for a wide range of k, both small, medium and large.
In turn this allows the efficient computation of functions of the operator T , in particular the associated Green’s
function (I − T )−1, as explained in the paper.1

3. BIORTHOGONAL DIFFUSION WAVELETS

In the classical setting, biorthogonal wavelet bases were introduced by Cohen, Daubechies, and Faveau.16 By
dropping the requirement that wavelet and scaling bases be orthonormal, they allow for more flexibility in
wavelet design; for instance, while there are no smooth, orthogonal, compactly supported, symmetric wavelets, it
is possible to construct compactly supported, smooth, symmetric biorthogonal wavelets. Biorthogonal wavelets
have since found successful applications in several areas of signal and image processing.

The diffusion wavelet construction builds smooth, local orthonormal bases for the scaling and wavelet spaces
Vj and Wj . By generalizing the construction to allow for biorthogonal bases, as in the classical setting, one
introduces an extra degree of flexibility which might be exploited.

Of particular interest, is the possibility of constructing “sparser” bases; i.e., bases whose elements have smaller
support. After all, one of the primary motivations for diffusion wavelets is the desire to build bases well adapted
to the spectrum of a diffusion operator, but more compactly supported than bases consisting of eigenvectors.
The diffusion basis for the space Vj spans approximately the same space as the eigenvectors {ek | λ2j

k ≥ ǫ}, but
the diffusion wavelets are concentrated on a relatively small set with exponential decay whereas the eigenvectors
ek are (in typical cases) supported on the entire graph. The orthonormal bases generated by the diffusion wavelet
construction are built from sums of selected columns of the input matrices Tj by the orthogonalization algorithm.
As such, they span the same subspace as a set of columns of Tj , but they are less compactly supported. This
strongly suggests simply choosing a set of columns of the input matrix Tj as an biorthogonal basis for the scaling
space. This offers other advantages as well; in the case of Markov chains it is convenient to represents the
states at a certain time scale in terms of probability distributions at the same scale, and the columns of the
corresponding power of the Markov matrix are natural candidates.



3.1. Biorthogonal Multiresolution Analysis

In the biorthogonal case there are two dual multiresolution analysis. The primal multiresolution analysis {Vj}j≥0

is defined as in the orthogonal case, except that a Riesz basis Φj spanning Vj is constructed, instead of the an

orthonormal basis. Then a dual multiresolution analysis {Ṽj}j≥0 is constructed in such a way that Ṽj is spanned

by a basis Φ̃j of scaling functions which are a dual Riesz basis to Φj , i.e. 〈ϕj,k, ϕ̃j,k′〉 = δk,k′ for any k 6= k′ ∈ Kj .
Hence for any function f in Vj we have

f =
∑

k∈Kj

〈f, ϕ̃j,k〉ϕj,k

and furthermore this decomposition is stable, in the sense that there exist constants A,B > 0 independent of f

such that
A||f ||2 ≤

∑

|〈f, ϕ̃j,k〉|
2 ≤ B||f ||2 .

In general the operator

f 7→
∑

k∈Kj

〈f, ϕ̃j,k〉ϕj,k

is an oblique projection on Vj along Ṽj , and analogously

f 7→
∑

k∈Kj

〈f, ϕj,k〉ϕ̃j,k

is an oblique projection on Ṽj along Vj .

There are also two families of wavelet subspaces, {Wj} and {W̃j}, with the property that Vj = Vj+1 ⊕ Wj

and Ṽj = Ṽj+1 ⊕ W̃j , where the sum is direct but not necessarily orthogonal. On the other hand it is always the

case that Wj is orthogonal to Ṽj+1 and W̃j is orthogonal to Vj+1. In general for a fixed multiresolution {Vj}

there are several dual multiresolutions {Ṽj} with the properties above.

3.2. Multiscale Biorthogonal Construction

The construction is designed to take advantage of the fact that the operators T 2j

are increasingly rank deficient.
This means that the effective numerical dimension of the space Vj , which comprises the part of the spectrum of

T 2j

above precision, is decreasing in j. Since Vj+1 is a subset of Vj , we can always represent objects at the j + 1
level of the multiresolution analysis in terms of Vj , the basis at the preceding level. This representation means
that all the objects we store and operator on are effectively compressed.

We start from a basis Φ0 which is ǫ-dense in V0 and a basis Φ̃0 which is ǫ-dense is Ṽ0 and dual to Φ0;

Φ̃0
∗
Φ0 = I

We are also given a diffusion operator T represented with respect to the basis Φ0; that is, we are given the matrix
T0 = [T ]Φ0

Φ0
. We will assume that T0 is sparse.

We use one of the orthogonalization procedures discussed in the preceding section to approximately factor
the n × n matrix T0 as

T0Π =
(

T11 T12

)

= Q
(

R11 R12

)

where Π is an n × n permutation, T11 is a n × k matrix consisting of k columns of T0, T12 is a n × (n − k)
matrix consisting of the remaining columns of T0, Q is a n×k orthogonal matrix, R11 is a k×k upper triangular
matrix and R12 is an k × (n − k) matrix. We interpret this factorization as follows. The columns of the matrix
Q form a downsampled orthogonal basis Θ1 which spans the range space of T0 up to precision. The columns of
Q are formed from sums of the columns of T11, which are those columns of the input matrix T0 “chosen” by the
orthogonalization procedure. The matrix R11 encodes the information needed to form T11 from the orthogonal
basis Θ1; the matrix R12 is used to approximate the remaining columns, up to the specified precision, using the
basis Θ1. The matrix

(

R11 R12

)

is [T ]Θ1

Φ0
, which represents the operator T on the domain Φ0 with range in

Θ1.



In the biorthogonal construction, we discard the actual orthogonal basis Θ1 and define the filter matrix M1

by M1 = T11 = QR11, which is the set of columns of T0 “chosen” by the orthogonalization procedure. Of course,
these vectors span the same set as the orthogonal basis Θ1. We define the next basis Φ1 as follows:

Φ1 = Φ0M1 = Φ0T11 = Φ0QR11

Of course we only store the matrix M1, which is a representation [I]Φ0

Φ1
of the basis Φ1 in terms of the initial

basis Φ0.

Since the basis Φ1 is not orthogonal, we will need to construct a dual basis Φ̃1. Recalling that T11 = QR11,
one might naively decide to set

Φ̃1 = Φ̃0QR−∗
11 . (2)

This is, in fact, a dual basis since
Φ̃1

∗
Φ1 = R−1

11 Q∗Φ̃0
∗
Φ0QR11 = I.

There is, however, a serious problem with this simplistic approach. The matrix Q in (2) implicitly includes
the downsampling operator which was applied to the columns of T0. But there is no reason to believe that the
columns of Φ̃1 should be downsampled in the same manner as T0. In general, the downsampling operator applied
to Φ̃1 will not choose a basis which spans Ṽ1 to the proper precision. A proper dual basis can be formed by
taking Φ̃1 to be a pseudoinverse of the matrix Φ1. A filter matrix M̃1 such that

Φ̃1 = Φ̃0M̃1

can then be computed. Of course, this is not an efficient method for computing the dual basis. The authors are
presently investigating how to efficiently construct dual bases in a natural multiscale fashion.

The matrix M̃1 is a representation [I]Φ̃0

Φ̃1

of the basis Φ̃1 with respect to Φ̃0; but there is another interpretation

as well. The coefficients of a vector in the basis Φ1 are computed by taking inner products of that vector with
the elements of the dual basis Φ̃1. If the individual elements of Φ1 are denoted by {φj

1}j and those of Φ̃1 are

denote by {φ̃j
1}j then for a vector x in V1

x =
∑

j

< x, φ̃
j
1 > φ

j
1

This implies that M̃1
∗

is the change of basis matrix [I]Φ1

Φ0
which takes vectors represented in Φ0 and computes

their coefficients in Φ1.

We next form a representation of the operator T 2 on the basis Φ1. In order to do this, we first need to
compute a representation of T on the domain Φ0 with range Φ1. This matrix, which we will call Proj1, is given
by

(

I R−1
11 R12

)

Π∗

To see that this is, in fact, correct note that

Φ1Proj1 = Φ0Q11R11

(

I R−1
11 R12

)

Π∗

≈
(

T11 T12

)

Π∗

= T0

The square is then given by

[T 2]Φ1

Φ1
= [I]Φ1

Φ0
[T ]Φ0

Φ0
[T ]Φ0

Φ1

= M̃1
∗
T0 ∗ Proj1

The resulting matrix, which we will call T1, becomes the input to the next level of the algorithm; we would now
proceed by applying the orthogonalization procedure to the columns of T1 in order to downsample them, and so
on.
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Figure 3. Some biorthogonal scaling functions in V3 (top left), in V7 (bottom left), and some orthogonal scaling functions
in V3 (top right), and V7 (bottom right).

The end result of the algorithm is a cascading sequence of bases and dual bases, each represented on the
bases at the preceding level via a filter matrix:

Φ0 Φ̃0

Φ1 = Φ0M1 Φ̃1 = Φ̃0M̃1

Φ2 = Φ1M2 Φ̃1 = Φ̃1M̃2

. . .

where Φj approximately spans Vj , Φ̃j approximately spans Ṽj , and Φ̃j

∗
Φj is the identity. This generalizes

classical biorthogonal wavelets in the sense that scaling functions and wavelets are encoded in terms of cascading
filters. In the classical setting the filters are the same across levels and locations, because of the dilation and
translation invariance of the construction. In this case no symmetries are assumed, so the filter matrices do not
exhibit any obvious structure.

4. EXAMPLES

In this section, we look at three examples. We start by illustrating the biorthogonal construction in a particularly
simple setting—the circle—and compare the resulting scaling functions to those obtained from the original
diffusion wavelet construction. The second example is the construction of the multiresolution analysis on the
unit sphere. In the final example, we consider a Markov process on a 8-state space. We will see that one of
the advantages of the biorthogonal construction is that the bases are always columns of a power of the original
operator (although those powers are not stored with respect to the original basis).

4.1. Multiresolution diffusion on the Circle

We consider a discretization of the Laplacian on the circle S1. We let X be a uniformly sampled grid of 512
points on [0, 2π] and T be the “standard” discretization of the Laplacian represented with respect to the delta
basis on X:

We take both the initial basis Φ0 and the initial dual basis Φ̃0 to be the delta basis on X, and set the
precision, ǫ, to 10−5. The biorthogonal construction proceeds by applying T to the basis Φ0 and downsampling
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Figure 4. The spectrum of the diffusion operator T on the
circle.

the columns of T to obtain a Riesz basis Φ1 of functions for V1. This basis is represented in terms of the basis
Φ0; that is, there is a filter matrix M1 such that

Φ1 = Φ0M1

The downsampling is achieved by using the same orthogonalization process as in the orthogonal case, but the
orthogonalized basis is discarded and the columns of T which were used to build that orthogonal basis are
retained. Next, A dual basis Φ̃1 = Φ̃0M̃1 such that

Φ̃1
∗
Φ1 = I

is computed in terms of the dual basis Φ̃0 at the proceeding level. At the present time, the authors do not know
how to do this dual basis computation in a multiscale fashion; however, the dual basis can always be computed by
taking the pseudoinverse of Φ1 in the original delta basis and changing the representation of the pseudoinverse.
Next, a representation T2 of the matrix T 2 with respect to the new basis Φ1 is computed. This computation
involves both the filter M1 and the dual filter M̃1. The process is now repeated; that is, the columns of the new
matrix T1 are downsampled to form a basis Φ2 = Φ1M2 and a basis Φ̃2 = Φ̃1M̃2 dual to Φ2 is computed. The
algorithm continues in this fashion, until the desired level is reached, in this case we stop at level 10.

This process differs from the orthogonal construction in two crucial respects. First, the orthogonalization
process is used only to downsample the input matrix Tj , the actual orthogonal basis is discarded; and second,
since the bases are no longer orthogonal, a dual basis must be computed. At each step in the orthogonal
construction, the orthogonalization process is applied to the input operator Tj , yielding an orthogonal filter
matrix Nj . The matrix Nj is constructed with a Gram-Schmidt process, so the resulting basis Φj = Φj−1Nj

consists of several layers. The first layer of the basis Φj corresponds to the first few columns of Nj , which are
simply selected columns of the input matrix Tj . These functions have very small support. The orthogonalization
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Figure 5. From left to right, all in logarithmic scale: compressed representation of the operator T
128, the true operator

T
128. Notice that the matrix on the left is 192× 192, while the one on the right is 512× 512. Reconstruction of T

128 from
the compressed biorthogonal representation and reconstruction of T

128 from the compressed orthogonal representation.
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Figure 6. From left to right: uncompressed representations of the biorthogonal basis on the circle at level 7, same matrix
in logarithmic scale; the (layered) orthogonal basis on the circle at level 7, same matrix in logarithmic scale.

process takes sums of a small number of columns of Tj in order to build the next few orthogonal columns of Nj ;
this corresponds to the second layer of Φj . These functions necessarily have larger support. The orthogonalization
process downsamples the matrix Tj ; it only uses a subset of the columns of Tj in order to construct Nj . But the
last few columns of Nj consist of functions which are sums over the full set of downsampled columns of Tj . This
corresponds to the last layer of functions in Φj , which generally have much larger support than those in the first
few layers.

Figure 3 shows biorthogonal scaling functions at various levels and compares them to orthogonal scaling
functions at the same levels. Notice that the biorthogonal scaling functions at each level all have supports of
the same size, unlike the orthogonal bases, which are layered. The functions in the first layer of each orthogonal
basis are formed from a single column of the input matrix, but the functions in later layers are sums over an
ever increasing number of the columns of the input matrix and as a result their support grow.

Figure 5 shows the compressed representation of T 128 with respect to Φ8 and the “true” operator T 128. The
compressed version is a 192 × 192 matrix with 36, 864 nonzero entries while the true T 128 is a 512 × 512 matrix
with 131, 584 entries. Figure 5 shows the reconstruction of T 128 from its compressed form in both the orthogonal
and biorthogonal case. The L2 operator norm of the difference between the reconsutrction versions and the
“true” operator T 128 is smaller than the required precision, 10−5, in both cases.

Finally, Figure 6 shows uncompressed representations of the orthogonal basis for V7 and the biorthogonal
scaling function basis for V7. Here the matrices Φj are displayed, so each column represents a single basis
function. The biorthogonal basis is simply a permuted subset of the columns of T 128, while the orthogonal basis
shows the layering effect quite clearly.

4.2. Multiresolution Analysis on the Sphere

Diffusion wavelets would be of little use if they were restricted to the circle. For our next example, we will take
X to be set of 2000 uniformly distributed points p1, p2, . . . , p2000 on the unit sphere S2. The matrix for the
diffusion operator T with respect to the delta basis on X is given by

T (i, j) = exp(−α · ||pi − pj ||
2
2)

where α is a constant. Entries that fall below the fixed threshold, 10−10, are discarded. Assuming α is reasonable,
this matrix is sparse and can be constructed efficiently by performing a nearest neighbor search for each point
in X (the columns of T are just truncated bump functions).

Once again we run both the orthogonal and biorthogonal algorithms with precision set to 10−5. Figure 8
compares some orthogonal and biorthogonal scaling functions at level 5 of the construction.

Figure 8 compares the compressed representation of T 8 to the “true” operator T 8. The uncompressed T 8

has more than 690, 000 entries with magnitude above 10−10, while the compressed version has approximately
400, 000 entries above the same threshold.
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Figure 8. Biorthogonal scaling functions at level 5 (top left and top right), and some orthogonal scaling at the same
level (bottom left and bottom right).
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Figure 9. Some dyadic powers of the Markov chain T .

4.3. Markov Chain

We now consider a simple example of a Markov chain on a graph with 8 states. We label the states {ν1, ν2, . . . , ν8}
and let T (i, j) be the probability of moving from state νi to νj , where T is the matrix

T =

























0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.79 0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.49 0.50 0.00 0.00 0.00 0.00
0.00 0.00 0.50 0.499 0.001 0.00 0.00 0.00
0.00 0.00 0.00 0.001 0.499 0.50 0.00 0.00
0.00 0.00 0.00 0.00 0.50 0.49 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.01 0.49 0.50
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50

























From the matrix it is clear that the states are grouped into four pairs {ν1, ν2}, {ν3, ν4}, {ν5, ν6}, and {ν7, ν8},
with weak interactions between the the pairs. Figure 9 shows some dyadic powers of the operator T .

Figure 10 shows compressed representations of T at several different levels. These compressed representations
show the structure of the Markov chain clearly. The operator T6 has downsampled the number of states down
to 4, one for each of the pairs. One can see the structure of weak and strong interactions between these pairs
from the matrix for T6. By level 13 (Figure 10), downsampling leaves only two states, one corresponding to the
original states {ν1, . . . , ν4} and one corresponding to {ν5, . . . , ν8}.
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