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A unified framework for harmonic analysis of functions on directed

graphs and changing data

H. N. Mhaskar
∗

Abstract

We present a general framework for studying harmonic analysis of functions in the settings of various emerging

problems in the theory of diffusion geometry. The starting point of the now classical diffusion geometry approach

is the construction of a kernel whose discretization leads to an undirected graph structure on an unstructured

data set. We study the question of constructing such kernels for directed graph structures, and argue that our

construction is essentially the only way to do so using discretizations of kernels. We then use our previous

theory to develop harmonic analysis based on the singular value decomposition of the resulting non–self–adjoint

operators associated with the directed graph. Next, we consider the question of how functions defined on one

space evolves to another space in the paradigm of changing data sets recently introduced by Coifman and Hirn.

While the approach of Coifman and Hirn require that the points on one space should be in a known one–to–one

correspondence with the points on the other, our approach allows the identification of only a subset of landmark

points. We introduce a new definition of distance between points on two spaces, construct localized kernels based

on the two spaces and certain interaction parameters, and study the evolution of smoothness of a function on

one space to its lifting to the other space via the landmarks. We develop novel mathematical tools that enable

us to study these seemingly different problems in a unified manner.

Keywords: Kernel construction, directed graphs, changing data problems, extension problems, wavelet–like rep-
resentation, Tauberian theorem.

1 Introduction

There are many approaches developed during the last decade or so in order to analyze large, unstructured, possibly
high dimensional data. The basic idea is to embed the high dimensional data on a low dimensional sub–manifold
of the ambient Euclidean space. The main theme of the research is then to understand the data geometry in terms
of the geometric properties of this sub–manifold. Well known techniques in this direction, dimensionality reduction
in particular, are Isomaps [63], maximum variance unfolding (MVU) (also called semidefinite programming (SDP))
[66], locally linear embedding (LLE) [57], local tangent space alignment method (LTSA) [67], Laplacian eigenmaps
(Leigs) [3], Hessian locally linear embedding (HLLE) [19], diffusion maps (Dmaps) [16], and randomized anisotropic
transform [11]. A recent survey of these methods is given by Chui and Wang in [12]. An excellent introduction
to the subject of diffusion geometry can be found in the special issue [8] of Applied and Computational Harmonic
Analysis, 2006. The application areas are too numerous to mention exhaustively. They include, for example,
document analysis [17], face recognition [38, 46, 11], hyperspectral imaging [10], semi-supervised learning [2, 4],
image processing [22, 6], cataloguing of galaxies [23], and social networking [64].

The starting point in diffusion geometry is the point cloud. A point cloud is a set P of points {xi} in a Euclidean
space, together with a similarity relation W , viewed as the matrix of edge weights in an undirected graph. In the
absence of any known structure on the set of points, the similarity relation is constructed by the so–called diffusion
matrix. For example, a standard construction for W is given by

Wi,j = exp(−‖xi − xj‖2/ǫ),

where {xi} is the set of points, ‖ · ‖ is the Euclidean norm, and ǫ is a judiciously chosen variance parameter. The
first few eigenvalues and eigenvectors of this matrix (or some related matrix, such as diag(row sums of W ) −W )
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provide the desired low dimensional embedding. Usually, these vectors codify certain identifiable features of the data
set. For example, in [11], the point cloud consists of thumbnail images of the faces of the same person in different
orientations. The components of the first non–trivial eigenvector orders the collection according to the angle of
rotation. Many such examples can be found in the literature; indeed, the well known concept of kernel PCA is based
on this fact. It is proved in [3, 5, 45, 61] that as the data becomes dense, the so–called graph Laplacian based on
a judiciously chosen (weighted) adjacency matrix, such as W , converges to the Laplace–Beltrami operator on the
unknown manifold from which the data is sampled, and likewise for the corresponding eigenvalues/eigenfunctions.
A deeper insight into the intimate connection between the eigenfunctions and the manifold is explained in [40, 41],
where it is shown that some of the eigenfunctions define a local coordinate system on the unknown manifold so
that the Euclidean distance between the points represented with these coordinates is proportional to the geodesic
distance between the points.

The applications of this theory to semi–supervised learning can be formulated as problems of function extension,
going beyond the important and difficult question of understanding the data geometry. For example, in semi–
supervised learning for classification, the class labels are known only on a small training subset C ⊂ P , and the
objective is to find the class labels for all points in P . The class label for a point x can be viewed as the value of a
target function f at x, and the question is then to extend f from C to P . Formulated in this manner, one can even
think of extending f to the entire manifold X, including those points which are not in the original data set P . Clearly,
all the regression problems in learning theory are also problems of function extension/approximation, for example
[30]. Indeed, one of the main reasons for the popularity of neural and radial basis function networks in learning
theory is their universal approximation property. An important problem in this paradigm is to estimate the fidelity
of the approximation scheme at unseen data points. Within the context of diffusion geometry, a rigorous analytic
theory to address this question is developed in [48, 25, 26, 51, 50], based on an abstract framework formulated in
[52]. The constructive algorithm that emerges from this theory is tested in the proof–of–concept experiments on
recognition of hand–written digits [48], the Cleveland heart disease data set, the Wisconsin breast cancer data set,
and a new experiment at NIH to predict automatically the local classifications of drusen in patients with age related
macular degeneration (AMD) based on multi–spectral fundus images of the retina [24].

The goal of the present paper is to develop a general framework in which function extension/approximation
problems can be studied in the context of two of the newly emerging paradigms in the theory of diffusion geometry,
namely, the problem of changing data sets, and the problem of analyzing functions on a directed graph.

The problem of analyzing changing data arises in many applications, for example, modeling of social networks,
where the relationships between the people involved may change over time, analysis of financial markets, evolutionary
biological questions, and the analysis of medical tests in patients as they change over a time period in the life of
the patient. In classical diffusion geometry, the eigenfunctions and eigenvalues are based on an existing data set.
The out–of–sample extension problem is the problem of incorporating new data as they emerge. This problem can
be viewed clearly as the problem of changing data as well.

Our technical motivation for the analysis of changing data sets is the paper [15] of Coifman and Hirn. In this
paper, the authors define a diffusion distance between points lying on two different manifolds, as well as a distance
between changing manifolds, based on these. One important feature of this framework is that the points in the
point clouds (respectively, the underlying manifolds) remain the same over different manifolds, and can be identified
uniquely in a one–to–one correspondence as the manifold changes. The authors illustrate an application of this
framework in the context of a sequence of hyperspectral images of essentially the same area over time. Each image
is treated as a point cloud, where the “points” are the spectral curves. Each point in one image is identified with
exactly one point in another image at the same spatial pixel location.

In practical applications, it is often not possible to identify each point on one manifold uniquely with the
corresponding point on another manifold. For example, in the analysis of brain MRI images of Alzheimer patients
taken over time, the images are taken at random points of the brain [42]. Therefore, even if the brain surfaces
are the “same” in the sense of belonging to the same patient, it is not possible to identify one point in the image
uniquely with another point on another image. In fact, there are different number of points in different images.
One may, however, consider the cortical thickness of the brain as a function on an imaginary sphere, approximate
its values at certain standard points, such as dyadic points, which can then be identified from one sphere to the
other in the sequence of images as they evolve in time.

In a different example, if one considers each frame of a video to be a point cloud/manifold as is often done in
image processing applications of diffusion geometry, each point on one video frame can get mapped to different
points on the next frame with different probabilities [53]. However, it may be reasonable to assume that certain
“landmark” points can be identified from manifold to manifold as they change. A related direction of research is
manifold matching, where one needs to match features of one manifold with the other to determine whether the
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two manifolds arise from different representations of the same data.

The framework developed in this paper enables us to study the lifting of functions from one manifold to another
via a set of landmarks rather than requiring a complete one–to–one correspondence between points of the different
manifolds.

Another important emerging direction is to extend the diffusion geometry paradigm to directed graphs rather
than undirected graphs defined by a symmetric matrix such as W above. For example, graphs arising from many
applications such as transportation problems in which traffic flow is restricted to one direction must be directed
graphs, in order to allow analysis of traffic along one way streets. In analyzing data about world–wide web links, the
direction of the links contains crucial information. Similarly, in an understanding of blood circulation, the direction
of blood flow is important. Other applications of directed graphs include one–way communication problems, social
interactions between people where the relationship is not necessarily symmetric, and scheduling problems.

Directed graphs are, of course, studied in great detail over more than a century. In particular, the notion of
symmetric graph Laplacian for a directed graph whose weighted adjancancy matrix is given by a Markov matrix
is developed by F. Chung in [13]. A recent well written Ph. d. thesis by Gidelew [29] develops harmonic analysis
based on this Laplacian, and cites several other papers in this direction. While this line of research assumes that
edge weights in the graph are already known, it is a separate question to impose a directed graph structure for an
unstructured data, analogous to the graph structure implied on undirected data by matrices such as W . One may
view the asymetric affinity matrices in [14] as kernels defining a directed graph in the abstract sense. To the best of
our knowledge, the only deliberate effort in this direction is the recent paper [54] by Mousazadeh and Cohen, where
a modified Gaussian kernel is proposed, and an analogue of the limiting Laplace–Beltrami operator is presented.
The theory of non–self–adjoint integral and differential operators is quite well developed, e.g., [31, 36, 47]. It is
therefore natural to obtain the desired graph structure by discretizing a suitable kernel, deemed most appropriate
for the application in question.

Unlike [3, 5, 45, 61] in the case of undirected graphs or [54] in the case of directed graphs, it is not our
intention to focus on specific constructions of the kernels which give rise to some concrete differential operator in
the limiting sense. The book [47] of Ma and Röckner gives a very readable account of the interconnection between
non–self–adjoint differential operators, the associated Dirichlet forms, Green’s kernels, and semi–groups of operators
generated by the differential operators. Several examples are also discussed in [47], and may be adapted for this
purpose. Instead, we wish to enumerate certain properties that such kernels ought to have in order to develop a
reasonably rich theory of harmonic analysis of functions defined on changing data or directed graphs. We will,
however, make some comments on what we consider likely to be a good construction of kernels in these cases,
leaving the details in each case to future research. In particular, in the case of construction of a directed graph
structure on data, we will argue that our suggestions provide essentially the only way to have such a structure, as
well as enable the construction of such structure to allow meaningful harmonic analysis based on this structure.

To describe our results more precisely, it is convenient to review the setting in the “classical” diffusion geometry
theory [17]. Let X be a metric measure space with a metric d and a sigma–finite Borel measure µ∗. Let {φk} be
a complete orthonormal system in L2(µ∗), considered as the eigenfunctions of a Laplician operator defined by a
formally defined kernel

−
∞∑

k=0

λ2kφk(x)φk(y), x, y ∈ X,

where λk is a sequence of non–negative numbers with λk ↑ ∞ as k → ∞. For the analysis of a measurable function
f : X → C, Coifman and Maggioni [17] propose taking dyadic powers of the “diffusion” operator

f 7→
∫

X

f(y)

{
∞∑

k=0

exp(−λ2kt)φk(·)φk(y)
}
dµ∗(y), x ∈ X,

for a small value of t. In practice this is done as dyadic powers of a sparse matrix using fast algorithms. Theoretically,
the range of the 2−2n–th power of this operator is approximately equal to the space

Π2nǫ = span{φk : λk < 2nǫ}.

for a suitable ǫ. The corresponding projection operator is given by

f 7→
∫

X

f(y)

{ ∑

k:λk<2nǫ

φk(·)φk(y)
}
dµ∗(y).
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For the detection of certain anomalies in the target function, it is desirable to approximate the function in the
uniform norm rather than the L2(µ∗) norm. It is well known that the projection operators are usually unbounded
if uniform approximation is desired, even in the very classical case of trigonometric Fourier series. In [52, 48], we
have initiated a study of function approximation and harmonic analysis in Lp(µ∗) for values of p 6= 2; with a special
emphasis on uniform approximation. The important starting point of our theory is therefore to construct localized
operators of the form

f 7→
∫

X

f(y)

{
∞∑

k=0

h

(
λk
n

)
φk(·)φk(y)

}
dµ∗(y) (1.1)

for a suitable (low pass or band pass) “filter” h.

Taking a sufficiently smooth function h as the filter ensures that these operators are uniformly bounded in every
Lp(µ∗), 1 ≤ p ≤ ∞. Using these operators, one can obtain wavelet–like dyadic representations in all of these spaces,
where the behavior of the terms characterizes completely the smoothness properties of the target function f . One
fascinating feature of this construction is that even if the operator itself is defined using the spectral information
about the target function f , the localization estimate leads one to the analogues of the well known theorems of
Jaffard [18, Theorems 9.2.1, 9.2.2]; i.e., the local smoothness of the target function at a point can be characterized
completely in terms of the behavior of the terms of the wavelet–like representation in a neighborhood of the point
in question. It is proved in [9] that such localized harmonic analysis can always be done when appropriate localized
kernels are available.

A feature common to both the new directions of research mentioned above that distinguishes the new problems
from the classical one is that one has to deal with two systems jointly. Thus, in the case of changing data or manifold
matching, one has two admissible systems Ξ1 = (X1, d1, µ

∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) (cf.

Definition 2.1 for a precise definition). The objective of interest in [15] was to define a “diffusion distance” between
points on the two manifolds using the respective heat kernels on the two manifolds. In our paper, the goal is to
study how a function defined on one system evolves into another function on the other system via an interaction
between the various parameters defining the two systems. We will assume the interaction only in an abstract sense,
without requiring that each point on one manifold should be identified uniquely with another point on the other
manifold. Moreover, the construction and theory is general enough to deal with situations where a point on one
manifold may go to different points on the other manifold according to some probability distribution.

The case of directed graphs is much easier in some sense. A directed graph is generated in this paradigm by
the discretization of a non–self–adjoint kernel operator. Thus, we again have two admissible systems, where the
underlying measure spaces, measures, and distances are the same in both the systems. In analogy to the classical
diffusion setting, it is convenient to take this kernel to be a suitable kernel related to some differential operator on
the underlying space, and the sequence {λk} to be the singular values of the differential operator. The two systems
arise by taking for {φ1,k}, {φ2,k} the left and right singular functions of the operator. With this insight, there is
essentially only one way to construct such operators, stemming from the polar decomposition of the non–self–adjoint
operator involved, and the theory which we have already developed can be applied directly with minor changes.

The basic objective of this paper is to obtain the analogues of the localized operators analogous to those in (1.1)
for harmonic analysis in these settings. Obviously, it cannot hold that these operators applied to a function on say
X2, will converge to the function itself – the result of this application is not even a function on X2. However, under
certain conditions, one can obtain a lifting operator from one space to the other so as to result in a lifting of the
original starting function to a corresponding function on the other space, and the smoothness properties of this lifted
function can be described using those of the starting function. A motivating model here is the classical theorems
in the theory of partial differential equations (or integral equations), such as trace theorems, inverse theorems, or
embedding theorems [56].

The important technical tool for achieving the unified framework is to prove what is known as a Tauberian
theorem. To describe this idea, we make an observation in the classical setting. If one considers the univariate
function defined by

µ(u) = µ(x, y;u) =
∑

k:λk<u

φk(x)φk(y), u > 0,

then µ has bounded total variation on compact sub–intervals of [0,∞), and the projection kernel can be expressed
formally in the form of the Stieltjes integral

∑

k:λk<n

φk(x)φk(y) =

∫ ∞

0

h(u/n)dµ(u),

4



where h(t) = 1 if 0 ≤ t < 1, and = 0 otherwise. The kernel of the operators defined in (1.1) can also be described in
the same way with different choices of h. Likewise, the heat kernel can be expressed formally as a Stieltjes integral

∫ ∞

0

exp(−u2t)dµ(u).

Our theorems in [48, 25] on the localization properties of the kernel of the operators defined in (1.1) can therefore
be viewed as statements about the properties of one integral transform of µ in terms of those of another transform.
Such a theorem is called a Tauberian theorem; a famous example being the Wiener–Ikehara Tauberian theorem
regarding the density of translates of a fixed function in L1(R). The history of such theorems in the settings of
classical harmonic analysis spans over a century, and is summarized excellently in a recent book [44] by Korevaar.
Early versions of the Tauberian theorems of the form which we will prove in this paper were obtained by Bochner
and Chandrasekharn [7].

Viewed in this abstraction, the specific nature of µ becomes irrelevant, in particular, the dependence of µ on
x, y or systems {λk}, {φk} does not play any role anymore. Therefore, the problem of constructing localized kernels
in two or more systems reduces to the problem of proving an appropriate Tauberian theorem. While the classical
development of such theorems is focused on the limiting or asymptotic behavior of a measure µ itself near ∞ or some
summability operator applied to µ, our theorem has a very different character. We are interested in obtaining some
very specific bounds on one transform when some other very specific bounds on the other transform are known. In
particular, the proof relies heavily upon both complex variable theory as well as distribution theory.

We summarize the main new contributions of this paper as follows:

• We point out a very simple way to construct kernels to embed a directed graph into a manifold, and argue
that this is essentially the only way to construct such kernels.

• We develop a theory for harmonic analysis of functions on directed graphs, whether using existing kernels as
the starting point, or by constructing specially designed kernels.

• We develop a theory of lifting a function on one data space to another using only the identification of certain
interaction parameters connecting the two spaces.

• We develop a mathematical theory that enables us to treat both of these seemingly unrelated problems in
a unified manner. Other contemplated applications of this theory include an analysis of solutions of partial
differential equations with non–self–adjoint operators, bit representation of signals on Euclidean spaces, and
smoothness–preserving image completion.

In Section 2, we will present our suggestions for the construction of kernels whose discretizations yield the desired
directed graph structure on an unstructured data. We will argue that our construction is essentially the only one
based on the idea of discretizing operators, barring some esoteric counterexamples. We will then discuss harmonic
analysis on the systems generated by these non–self–adjoint kernels. The results are partly a review of our previous
results, and partly a bridge between these and the results on changing data, which will be described in Section 3.
The proofs of all the results, including the Tauberian theorem will be given in Section 4.

2 Directed graphs

In this section, we focus on a discussion of harmonic analysis on directed graphs. In Sub–section 2.1, we discuss
the construction of the systems themselves, either from a pre–existing structure, or from the point of view of
constructing kernels in order to embed the given data as a directed graph on points on an ambient manifold. We
will point out that there is essentially only one way to make such constructions. In Sub–section 2.2, we assume
that the system is constructed, and study the harmonic analysis of functions on the graphs based on the system
assuming certain conditions. The results are obtained as immediate consequences of our results in [48, 25], and
serve both as a review of these results and a prelude to the results to be presented in Section 3. We note that in
the continuous setting, it is natural to think of a directed graph as a non–self–adjoint operator. Therefore, it is
not necessary that this operator must map a Hilbert space to itself. For example, in applications in photo–acoustic
tomography one encounters operators defined on one Hilbert space, taking values in a different Hilbert space [27].
We will explain in Remark 3.2 how the analysis presented in this section can be extended easily to such situations.
However, for simplicity, we will restrict ourselves in this section to the case of one space.
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2.1 Construction of the graph structure

To motivate our discussion, let us recall that a directed graph with the vertex set {xi}Mi=1, and edge weights w(xi, xj)
is anM ×M non–symmetric matrixW whose entries are w(xi, xj). Then the polar form for W [39, Corollary 7.3.3]
is PU , where P is a uniquely determined positive semi–definite matrix with the same rank as W , and U is unitary
and real. If W has full rank, then U is determined uniquely. In this case, efficient algorithms to compute the polar
decomposition are given recently by Nakatsukasa, Bai, and Gygi [55].

Writing P in the form

P (xi, xj) =

M−1∑

k=0

λkφk(xi)φk(xj),

for some orthogonal vectors φk, the singular value decomposition of W is given by

W (xi, xj) =

M−1∑

k=0

λkφk(xi)(U
∗φk)(xj).

Thus, if f is any function on the points {xi}, then
(Wf)(xi) = (P (Uf))(xi).

Therefore, the harmonic analysis of f based on the singular vectors of W is the same as the harmonic analysis of
Uf based on the eigenvectors of P , as in [52, 37]. Moreover, this is essentially the only shape such a harmonic
analysis can take.

We digress to make a comparison with the construction of the graph Laplacian for directed graphs proposed in
[13], where the role of W is played by a non–symmetric matrix denoted in [13] by Φ1/2PΦ−1/2. Writing in this
discussion, I for the identity matrix, the graph Laplacian in [13] is then given by

I − W +W ∗

2
= 2

(
I −

(
W + I

2

)(
(W + I)∗

2

))
− 1

2
(I −WW ∗),

which is the same for the graph Laplacian corresponding to the underlying undirected graph given by (W +W ∗)/2.
The quantity P 2 = WW ∗ in our notation refers to a different undirected graph. If Wi,j denotes the transition
probability of going from state i to state j, (WW ∗)i,j denotes the probability of nodes i and j leading to some
common state. The matrix (1/2)(W +I)((1/2)(W +I))∗ can also be given a similar interpretation, where self–loops
are added to the original graph at each vertex.

In the case of infinite graphs, the same analysis and logic works, provided the infinite matrix of edge weights
represents a compact operator. The operator U in this case may only be a partial isometry rather than a unitary
operator, but this detail does not affect our analysis in this section. In this case, we can view the matrix as the
kernel, and the underlying measure to be an atomic measure [36]. If we do not have a choice of the weight matrix,
then clearly, the problem of finding the polar decomposition is equivalent to the problem of finding the singular
value decomposition. However, the basic fact that the resulting harmonic analysis will be the same as the harmonic
analysis of Uf based on the symmetric component is still the same.

In the case when there is no preconceived notion of what the weight matrix ought to be, and we have to
impose the structure as in the case of classical diffusion geometry, these observations make the problem of kernel
construction almost trivial. We start with any kernel based, self–adjoint, positive semi–definite operator, with
any familiar kernel used in classical diffusion geometry that leads to a compact operator, such as the Gaussian,
or some Green’s kernel of a desired elliptic differential operator, take a composition with an appropriate partial
isometry (even a unitary operator for simplicity), and discretize the resulting operator. This approach leads to a
very flexible construction, where also the unitary operator may be treated as a parameter to be chosen according to
the application. In particular, if P is an operator that commutes with a self–adjoint operator L then it is obvious
that W and LU commute in the sense that (LU)∗W =W ∗(LU) and W (LU)∗ = (LU)W ∗.

We observe that this is essentially the only way to construct a reasonable directed graph structure in the
paradigm of diffusion geometry; i.e., by discretizing kernel based operators. For example, if the non–self–adjoint
operator is a Hilbert–Schmidt operator, then a polar decomposition is guaranteed [31], and the fact that the self–
adjoint operator is also Hilbert–Schmidt, and hence, kernel based, is observed, for example, in [36].

Thus, a simple example of the construction in [54] is the following. We wish to construct an operator on a
Euclidean space Rq. Fixing z∗ ∈ Rq and t > 0, we define

(Wtf)(x) = (2πt)−1/2

∫

Rq

exp

(
−‖x− y − z∗‖2

t

)
f(y)dy = (2πt)−1/2

∫

Rq

exp

(
−‖x− y‖2

t

)
f(y − z∗)dy.

6



It is readily seen that this has the polar decomposition as above where the positive definite self–adjoint operator is
defined by the Gaussian kernel, and the unitary operator is defined by f 7→ f(·− z∗). Greater flexibility is obtained
by treating z∗ as a parameter in addition to t. In [54], the integral is taken over an unknown manifold, the inner
product z∗ · (x− y) is replaced by a vector field operating on x− y, and some numerical experiments are presented
to illustrate the idea.

2.2 Harmonic analysis

In this section, we will assume that the necessary structures are available, and develop harmonic analysis based
on these. This section may be viewed partly as a review of our previous work on one system, and partly as an
example of the results in Section 3. For this reason, some of the definitions will be more general than necessary in
the context of directed graphs.

First, we describe some terminolgy.
If X is a measure space and ν is a (signed complex valued, or positive) measure on X, then for measurable

f : X → C, we define

‖f‖X,ν,p =





{∫

X

|f(x)|pd|ν|(x)
}1/p

, if 1 ≤ p <∞,

|ν| − ess supx∈X
|f(x)|, if p = ∞.

(2.1)

The space Lp(X, ν) consists of all (equivalence classes of) functions f : X → C for which ‖f‖X,ν,p <∞. If the space
X is clear from the context, then we will drop its mention from the notation, and similarly if the measure ν is clear
from the context, we will drop its mention as well, as long as the mention of X is dropped. Thus, for example,
Lp(µ∗) refers to Lp(X, µ∗).

We recall that if X is a measure space with a positive measure µ∗, a system {φk}∞k=0 ⊂ L2(µ∗) is called a Bessel

system if there is a subset D of L1(µ∗) ∩ L∞(µ∗), dense in L2(µ∗), and a functional N on L2(µ∗) such that

∞∑

k=0

∣∣∣∣
∫

X

f(x)φk(x)dµ
∗(x)

∣∣∣∣
2

≤ N (f), f ∈ D. (2.2)

For example, if X is a complete Riemannian manifold without boundary, and µ∗ is its volume measure, F is a vector
field defined on X, and {φk} are the eigenfunctions of the Laplace-Beltrami operator on X then the Green’s formula
implies that {Fφk} is a Bessel system.

Definition 2.1 Let X be a locally compact quasi–metric space with a sigma–finite positive Borel measure µ∗, d be
the quasi–metric on X, {λk} be a non–decreasing sequence of positive numbers, with λ0 = 0 and limk→∞ λk = ∞.
Let {φk} be a Bessel system of functions in L2(X, µ∗), such that each φk is continuous, bounded, and integrable on
X. Then Ξ = (X, d, µ∗, {λk}, {φk}) will be called an admissible system.

In this section, we assume that a directed graph is represented in abstract by an admissible system
Ξ = (X, d, µ∗, {λk}, {φk}) (cf. Definition 2.1), where {φk} is an orthonormal set of functions in L2(µ∗), together
with a partial isometry operator U on L2(µ∗). The measure µ∗ may be a discrete measure, and we do not assume
that the system is constructed with any particular choice of kernels. Therefore, our theorems are applicable in
the settings of finite or infinite pre–defined directed graphs or in the setting where a directed graph structure is
constructed in order to embed the graph on a manifold, as long as the required assumptions to be enumerated
in Theorem 2.1 are satisfied. The system {ψk = U∗φk} is necessarily also an orthonormal system, so that the
system Ξ′ = (X, d, µ∗, {λk}, {ψk}) is also an admissible system. As we pointed out in Section 2.1, the harmonic
analysis of a function f on X in the setting of this abstract directed graph is actually a decomposition of Uf into a
convergent series of components band limited to different frequency bands with respect to the system {φk}, based
on the data on f with respect to the system {ψk}. We will show that the behavior of these components characterize
the smoothness properties of Uf .

In the absence of any differentiability structure, one needs to define the notion of smoothness carefully. We will
do this for the system Ξ, but will need to use it also for the system Ξ′. First, we define for f ∈ L1(µ∗) + L∞(µ∗),

f̂(k) = f̂(Ξ; k) =

∫

X

f(y)φk(y)dµ
∗(y), k = 0, 1, · · · . (2.3)

The analogue of the classical Sobolev classes with smoothness index γ is the class of all functions in L2(µ∗) for
which

∞∑

k=0

(k2 + 1)γ |f̂(k)|2 <∞.
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This definition has the advantage that it does not depend upon any differentiability structure on X. However, even
in the most classical case of the trigonometric Fourier analysis, it is well known that the Fourier coefficients do not
characterize the smoothness of the function in spaces other than the space of 2π–periodic functions square integrable
on [−π, π]. So, this definition does not quite work in the case of other Lp spaces. To modify this definition, we will
use the notion of the degree of approximation, En,p(Ξ; f) defined in (2.5) below.

For n > 0 (not necessarily integer), let

Πn = Πn(Ξ) = span{φk : λk < n}, (2.4)

En,p(f) = En,p(Ξ; f) = inf
P∈Πn

‖f − P‖X,µ∗,p, f ∈ Lp(X, µ∗), 1 ≤ p ≤ ∞. (2.5)

The class of all f for which En,p(f) → 0 as n → ∞ will be denoted by Xp = Xp(Ξ). In view of Parseval identity
we observe that if f ∈ X2(Ξ), then

E2
n,2(f) =

∑

k:λk≥n

|f̂(k)|2.

Hence, using a routine dyadic sum argument, it is easy to deduce that

∞∑

k=0

(k2 + 1)γ |f̂(k)|2 ∼
∞∑

j=0

22jγE2j ,2(f)
2.

(Here, and in the sequel, we use the following convention regarding constants. The symbols c, c1, · · · will denote
generic positive constants independent of the obvious variables, such as f in the above equation. The values of
these constants may be different at different occurrences, even within the same formula. The symbol A ∼ B will
mean that c1A ≤ B ≤ c2B.) This observation prompts the following definition. For 0 < ρ ≤ ∞ and 0 < γ < ∞,
the Besov space Bp,ρ,γ = Bp,ρ,γ(Ξ) is the class of all f ∈ Xp such that the quantity ‖f‖p,ρ,γ <∞, where

‖f‖p,ρ,γ = ‖f‖Ξ,p,ρ,γ =





‖f‖X,µ∗,p +




∞∑

j=0

2γρjE2j ,p(f)
ρ




1/ρ

, if 0 < ρ <∞,

‖f‖X,µ∗,p + supj≥0 2
γjE2j ,p(f), if ρ = ∞.

(2.6)

The index γ may be thought of as the smoothness parameter, the parameter ρ adds an additional level of refinement
to the smoothness classes. It is well known in approximation theory that the smoothness of a function f ∈ Xp as
measured by K–functionals can be characterized in terms of En,p(f). In the context of diffusion geometry, we have
given such theorems in [48, 25].

It is convenient to define a sequence space bρ,γ consisting of all sequences a = {ak}∞k=0 for which

‖a‖bρ,γ =








∞∑

j=0

2γαj|aj |ρ



1/ρ

, if 0 < ρ <∞,

supj≥0 2
jγ |aj |, if ρ = ∞,

(2.7)

is finite. Thus, Bp,ρ,γ consists of f ∈ Xp such that {E2j ,p(f)}∞j=0 ∈ bρ,γ .

Our analysis of functions on X is based on spectral information of the form {f̂(Ξ′; k)}∞k=0, but the smoothness
of Uf is measured in terms of the Besov spaces Bp,ρ,γ(Ξ).

To obtain the wavelet–like representation, we introduce some further terminology.
For a function H : [0,∞) → [0,∞), we define formally a kernel

Φn(Ξ,Ξ
′;H,x, y) =

∞∑

k=0

H

(
λk
n

)
φk(x)ψk(y), x, y ∈ X. (2.8)

Definition 2.2 A function h : R → [0, 1] is called a low pass filter if h is even, h(u) = 1 if |u| < 1/2, h(u) = 0
if |u| ≥ 1, and h is non–increasing on [0,∞).

With a low pass filter h, we next define a reconstruction operator for f ∈ L1(µ∗) + L∞(µ∗), x ∈ X by

σn(Ξ,Ξ
′;h, f, x) =

∞∑

k=0

h

(
λk
n

)
f̂(Ξ′; k)φk(x) =

∫

X

Φn(Ξ,Ξ
′;h, x, y)f(y)dµ∗(y), (2.9)

8



and the analysis operators

τj(Ξ,Ξ
′;h, f, x) =

{
σ1(Ξ,Ξ

′;h, f, x), if j = 0,
σ2j (Ξ,Ξ

′;h, f, x)− σ2j−1 (Ξ,Ξ′;h, f, x), if j = 1, 2, · · · (2.10)

We observe that since h is a low pass filter, σ1 is a filtered projection on the low frequency components for which
λk < 1. In the case when the λk’s are obtained as singular values of some operator, σ1 clearly includes the projection
on the kernel space of this operator.

In the case of analysis in L2(µ∗), we may take h to be the usual cut–off function: h(t) = 1 if 0 ≤ t < 1, h(t) = 0
if t ≥ 1. The operators σn and τj are then the projections on Πn and the “wavelet space” Π2j ⊖Π2j−1 respectively.
In the case of other Lp spaces, for the purpose of analysis in uniform norm in particular, we need a smooth function
h. A smooth function h results in a well localized kernel for the operators.

Next, it is convenient to formulate some of our important assumptions in the form of a definition.

Definition 2.3 The heat kernel on an admissible system Ξ = (X, d, µ∗, {λk}, {φk}) is defined formally by

Kt(Ξ;x, y) =
∞∑

k=0

exp(−λ2kt)φk(x)φk(y). (2.11)

We say that Ξ satisfies the Gaussian upper bound condition (with exponent q) if there exists q > 0, such that

|Kt(Ξ;x, y)| ≤ c1t
−q/2 exp

(
−c2

d(x, y)2

t

)
, 0 < t ≤ 1, x, y ∈ X. (2.12)

In particular, the series in (2.11) converges for all x, y ∈ X.

Example 2.1 (the manifold case) A typical example of a system satisfying the Gaussian upper bound condition is
the following. Let X be a compact (C∞), connected Riemannian manifold, µ∗ be the Riemannian volume measure on
X, and d be the geodesic distance. We consider the Laplace–Beltrami operator on X, and let {−λ2k} be the sequence
of its eigenvalues, with corresponding sequence of eigenfunctions {φk}. Then the system (X, d, µ∗, {λk}, {φk}) is an
admissible system. It is shown in [43] that under certain conditions on X, if −λ2k are the eigenvalues of certain elliptic
operators, and φk are the corresponding eigenfunctions, then (2.12) is satisfied. Many other general situations in
metric measure spaces are known [33, 34, 35] and references therein. �

Remark 2.1 In the case when X is a finite graph, the heat kernel corresponding to a vertex–based graph Laplacian
satisfies the Gaussian upper bound condition for large values of t rather than small values as in Definition 2.3. It is
shown in [28] that the solution of the wave equation corresponding to an edge–based Laplacian satisfies the property
known as finite speed of wave propagation. In turn, this is equivalent to the Gaussian upper bound condition for
small values of t as stipulated in Definition 2.3 [60, 25].

We will denote the ball of radius r around x by

B(x, r) = {y ∈ X : d(x, y) ≤ r}, (2.13)

and note that all balls are compact.
With this preparation, we are ready to state our wavelet–like representation theorem.

Theorem 2.1 Let Ξ = (X, d, µ∗, {λk}, {φk}) be an admissible system satisfying the Gaussian upper bound condition
with exponent q > 0. Let U be a partial isometry operator on L2(µ∗), ψk = U∗φk, and Ξ′ = (X, d, µ∗, {λk}, {ψk})
be the associated admissible system. We assume further that µ∗ satisfies the regularity condition

µ∗(B(x, r)) ≤ crq, x ∈ X, r > 0. (2.14)

Let 1 ≤ p ≤ ∞, f ∈ L1(µ∗) + L∞(µ∗), Uf ∈ Xp, and h be a sufficiently smooth low pass filter.
(a) For n ≥ 1, we have

En/2,p(Ξ;Uf) ≤ ‖Uf − σn(Ξ,Ξ
′;h, f)‖X,µ∗,p ≤ cEn,p(Ξ;Uf). (2.15)

(b) In the sense of Lp(µ∗) convergence,

Uf =

∞∑

j=0

τj(Ξ,Ξ
′;h, f). (2.16)

9



(c) If p = 2, then
∞∑

j=0

‖τj(Ξ,Ξ′;h, f)‖2
X,µ∗,2 ≤ ‖Uf‖2

X,µ∗,2 ≤ 5

∞∑

j=0

‖τj(Ξ,Ξ′;h, f)‖2
X,µ∗,2. (2.17)

(d) Let 0 < ρ ≤ ∞, γ > 0. Then Uf ∈ Bp,ρ,γ if and only if {‖τj(Ξ,Ξ′;h, f)‖X,µ∗,p}∞j=0 ∈ bρ,γ .

Remark 2.2 In the case when U is the identity operator, Theorem 2.1 reduces to the corresponding theorems in
[48] for the undirected case. �

3 Analysis on changing data

Our constructions in this section are motivated by the paper [15] of Coifman and Hirn. In our terminology, they
consider two admissible systems Ξ1 = (X, d1, µ

∗, {λ1,j}, {φ1,j}) and Ξ2 = (X, d2, µ
∗, {λ2,k}, {φ2,k}) with the base

measure space (X, µ∗) being common to both, and {φ1,j}, {φ2,k} being orthonormal systems. The diffusion distance
between x1, x2 ∈ X, with the points considered as elements of different copies of X is defined by

‖Kt(Ξ1;x1, ·)−Kt(Ξ2;x2, ·)‖2 =

{
K2t(Ξ1;x1, x1) +K2t(Ξ2;x2, x2)− 2ℜe

∫

X

Kt(Ξ1;x1, y)Kt(Ξ2; y, x2)dµ
∗(y)

}1/2

.

Thus, the interaction term is the inner product expression above, which can be written in the form

ℜe
∞∑

j,k=0

exp(−t(λ21,j + λ22,k))〈φ1,j , φ2,k〉φ1,j(x1)φ2,k(x2),

where 〈·, ·〉 denotes in this context the inner product in L2(µ∗).
This prompts the following more general set up. We are interested in the interaction of two systems Ξ1 =

(X1, d1, µ
∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}). We assume that a subset of “landmarks” Y1 ⊂ X1

is in a one–to–one correspondence with the corresponding subset of landmarks Y2 ⊂ X2, with some smoothness
conditions on this correspondence as appropriate. To simplify notation, we will assume simply that Y1 = Y2 = Y ⊆
X1 ∩ X2, and that there is a positive measure ν∗ supported on Y such that ν∗(Y) = 1. The measure ν∗ might well
be discrete.

Our first objective in this section is to examine which functions on X2 can be lifted to functions on X1 via the
landmarks Y, and how the smoothness of such a lifted function changes from that of the original function. One
example is the theory in Section 2.2, where the “lifted” function is Uf , and the smoothness does not change. A
different model is the trace theorems for partial differential equations, where the smoothness of the trace/extension
is typically different from the function one starts out with.

As a simple starting point, we replace 〈φ1,j , φ2,k〉 in the interaction term above by

Γj,k =

∫

Y

φ1,j(y)φ2,k(y)dν
∗(y), j, k = 0, 1, · · · . (3.1)

Let h be a smooth, low pass filter, and Γ be the matrix defined by (3.1). We define

Φn,⊗(Ξ1,Ξ2;h, x1, x2) =
∞∑

j,k=0

h

(
λ1,j
n

)
h

(
λ2,k
n

)
Γj,kφ1,j(x1)φ2,k(x2), x1 ∈ X1, x2 ∈ X2. (3.2)

If f ∈ L1(X2, µ
∗
2) + L∞(X2, µ

∗
2), we define

σn,⊗(Ξ1,Ξ2;h, f, x1) =

∫

X2

f(x2)Φn,⊗(Ξ1,Ξ2;h, x1, x2)dµ
∗
2(x2), x1 ∈ X1, n > 0. (3.3)

In the case when Ξ1 = (X, d1, µ
∗, {λ1,j}, {φ1,j}) and Ξ2 = (X, d2, µ

∗, {λ2,k}, {φ2,k}), Y = X, ν∗ = µ∗, we have
for each k,

σm,⊗(Ξ1,Ξ2;h, φ2,k, x1) = h

(
λ2,k
m

) ∞∑

j=0

h

(
λ1,j
m

)
Γj,kφ1,j(x1) = h

(
λ2,k
m

)
σm(Ξ1,Ξ1;h, φ2,k, x1).
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It is not difficult to deduce from here, under suitable conditions as in [48], that lim
m→∞

σm,⊗(Ξ1,Ξ2;h, P ) = P for

every P ∈ Π∞(Ξ2). Moreover, the results in [48] show that if P is sufficiently smooth in Ξ1, then

‖σ2m+1,⊗(Ξ1,Ξ2;h, P )− σ2m,⊗(Ξ1,Ξ2;h, P )‖X1,µ∗

1
,p = O(2−mβ)

for some β > 0. In our more general case, this may or may not be true, depending upon the choice of Y and ν∗.
Nevertheless, in order to obtain a theorem about the change in smoothness of a function when “lifted” from Ξ2 to
Ξ1, we need to make a similar assumption ((3.5) below).

Theorem 3.1 Let Ξ1 = (X1, d1, µ
∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) be two admissible systems

as in Definiton 2.1, each of which satisfies the Gaussian upper bound condition with exponents q1, q2 respectively,
where {φ1,j} and {φ2,k} are orthonormalized with respect to µ∗

1, respectively, µ
∗
2. Let Y be a measurable (with respect

to both µ∗
1 and µ∗

2) subset of X1 ∩ X2, ν
∗ be a probability measure on Y, Γj,k be defined as in (3.1). Let h be a

sufficiently smooth low pass filter, and µ∗
1, µ

∗
2 satisfy the following regularity condition (cf. (2.13)):

µ∗
j (Bj(x, r)) ≤ crqj , x ∈ Xj , r > 0, j = 1, 2. (3.4)

Let 1 ≤ p ≤ ∞. We assume further that there exists a β > 0 such that for any m,n ≥ 1 and P ∈ Πn(Ξ2),

‖σ2m+1,⊗(Ξ1,Ξ2;h, P )− σ2m,⊗(Ξ1,Ξ2;h, P )‖X1,µ∗

1
,p ≤ c2−mβnq1+(q2−q1)/p‖P‖X2,µ∗

2
,p. (3.5)

If f ∈ Lp(X2, µ
∗
2), and

∞∑

m=0

2m(q1+(q2−q1)/p)E2m,p(Ξ2; f) <∞, (3.6)

then E⊗(f) = E⊗(Ξ1,Ξ2; f) = lim
n→∞

σ2n,⊗(Ξ1,Ξ2;h, f) exists in the sense of Lp(Ξ1, µ
∗
1), and

E2n,p(Ξ1; E⊗(f)) ≤ c

{
∞∑

m=n

2m(q1+(q2−q1)/p)E2m,p(Ξ2; f) + 2n(q1+(q2−q1)/p−β)‖f‖Ξ2,p

}
. (3.7)

In particular, if β > γ > q1 + (q2 − q1)/p, 0 < ρ ≤ ∞, and f ∈ Bp,ρ,γ(Ξ2), then E⊗(f) ∈ Bp,ρ,γ−q1−(q2−q1)/p.

We note that even if Ξ1 = Ξ2 in the above theorem, a straighforward application of the theorem leads to a loss
of smoothness in f . This is a technicality due in part to the very general nature of Y and ν∗, but also due to the
definition of σn,⊗. It is possible to eliminate this anomaly by defining the analogue of the various quantities in one
system theory in our context in an abstract manner rather than assuming the identification of some elements of X1

with those in X2 via Y.
In particular, we want to define a version of the Gaussian upper bound condition appropriate to two systems

considered jointly. To motivate this discussion, we first make an observation, continuing the same scenario as in
Theorem 3.1.

Example 3.1 Let Ξ1 = (X1, d1, µ
∗
1, {λ1,j}, {φ1,j}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) be two admissible systems

as in Definiton 2.1, each of which satisfies the Gaussian upper bound condition with exponents q1, q2 respectively,
where {φ1,j} and {φ2,k} are orthonormalized with respect to µ∗

1, respectively, µ
∗
2. Let Y be a measurable (with

respect to both µ∗
1 and µ∗

2) subset of X1 ∩X2, ν
∗ be a probability measure on Y. We define, in this example only,

d1,2(x1, x2) = inf
y∈Y

(d1(x1, y) + d2(y, x2)) . (3.8)

Since d1,2 is defined on X1 ×X2, it cannot be called a distance in the usual sense of the term, but it is clearly non–
negative, satisfies the symmetry condition d1,2(x1, x2) = d2,1(x2, x1), and the analogues of the triangle inequality:

d1,2(x1, x2) ≤ c (d1(x1, x
′
1) + d1,2(x

′
1, x2)) , x1, x

′
1 ∈ X1, x2 ∈ X2,

d1,2(x1, x2) ≤ c (d1,2(x1, x
′
2) + d2(x

′
2, x2)) , x1 ∈ X1, x2, x

′
2 ∈ X2. (3.9)

Next, we let ℓj,k = (λ21,j + λ22,k)
1/2, and

Kt(Ξ1,Ξ2;x1, x2) =

∞∑

k,j=0

exp(−ℓ2j,kt)Γj,kφ1,j(x1)φ2,k(x2). (3.10)
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An application of (2.12) shows that

|Kt(Ξ1,Ξ2;x1, x2)| =

∣∣∣∣
∫

Y

Kt(Ξ1;x1, y)Kt(Ξ2;x2, y)dν
∗(y)

∣∣∣∣

≤
∫

Y

|Kt(Ξ1;x1, y)||Kt(Ξ2;x2, y)|dν∗(y)

≤ ct−(q1+q2)/2

∫

Y

exp

(
−cd1(x1, y)

2 + d2(y, x2)
2

t

)
dν∗(y)

≤ ct−(q1+q2)/2 exp

(
−cd1,2(x1, x2)

2

t

)
. (3.11)

�

The next example is meant to illustrate the need for a more general set up which arises in a very routine
extension of functions on the closed unit disc of R2 to the Euclidean sphere S2 in R3.

Example 3.2 Let X1 be the Euclidean hemisphere

X1 = {p(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) : θ ∈ [0, π/2], φ ∈ (−π, π]},

d1 be the geodesic distance on X1, µ
∗
1 be the area measure, normalized to be a probability measure, λ1,(j,ℓ) =√

(j + ℓ)(j + ℓ+ 1), j = 0, 1, · · · , ℓ ∈ Z, and

φ1,(j,ℓ)(p(θ, φ)) =
√
2 sin|ℓ| θp

(|ℓ|,|ℓ|)
2j+1 (cos θ) exp(iℓφ),

where, in this example, p
(α,β)
k denotes the orthonormalized Jacobi polynomial of degree k; i.e., a polynomial of

degree k with positive leading coefficients, such that for integer k, j ≥ 0,

∫ 1

−1

p
(α,β)
k (x)p(α,β)m (x)(1 − x)α(1 + x)βdx =

{
1, if k = m,
0, otherwise.

For X2, we take the unit disc {(x, y) ∈ R2 : x2+y2 ≤ 1}, d2 to be the Euclidean distance, µ∗
2 to be the area measure,

let q(θ, φ) = (sin θ cosφ, sin θ sinφ), θ ∈ [0, π/2], φ ∈ (−π, π], λ2,(k,m) = k|m|+ k + |m|, and define φ2,(k,m) by

φ2,(k,m)(q(θ, φ)) =

√
2|m|+2

π
sin|m| θ cos θp

(|m|,1)
k (cos(2θ)) exp(imφ), m ∈ Z, k = 0, 1, · · · .

In this example, each member of the systems {φ1,(j,ℓ)}, {φ2,(k,m)} is equal to 0 on X1 ∩ X2. So, the construction
as in Example 3.1 does not work. There is, of course, an obvious one–to–one correspondence between each point
p(θ, φ) ∈ X1 and q(θ, φ) ∈ X2, but since the measures are different, we are in a different setting from the one
described in [15] as well. As an interaction term, we find it convenient to define for j, k = 0, 1, · · · , ℓ,m ∈ Z,

A(j,ℓ),(k,m) =

{ √
π2−|m|−5/4a

(m)
j,k , if ℓ = m, 0 ≤ k ≤ j,

0, otherwise,

where

a
(m)
j,k =

∫ 1

−1

p
(|m|,1/2)
j (x)p

(|m|,1)
k (x)(1 − x)|m|(1 + x)dx, 0 ≤ k ≤ j, j = 0, 1, · · · , m ∈ Z.

Explicit expressions for a
(m)
j,k are known, cf. [1, Lecture 7]. Using the fact ([62, Theorem 4.1, Formula (4.3.4)]) that

for α > −1, θ ∈ [0, π/2],

p
(α,α)
2j+1 (cos θ) = 2α/2+3/4 cos θp

(α,1/2)
j (cos(2θ)), j = 0, 1, · · · , (3.12)

we now deduce that
∞∑

k=0

∑

m∈Z

A(j,ℓ),(k,m)φ2,(k,m)(q(θ2, φ2)) = φ1,(j,ℓ)((p(θ2, φ2)).
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Since φ1,(j,ℓ) are Dirichlet eigenfunctions of the Laplace–Beltrami operator on X1 corresponding to the eigenvalue
−λ21,(j,ℓ), it follows from the results in [43, 20] that

∣∣∣∣∣∣

∞∑

j,k=0

∑

m,ℓ∈Z

exp(−(j + ℓ)(j + ℓ+ 1)t)A(j,ℓ),(k,m)φ1,(j,ℓ)((p(θ, φ))φ2,(k,m)(q(θ2, φ2))

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

j=0

∑

ℓ∈Z

exp(−(j + ℓ)(j + ℓ+ 1)t)φ1,(j,ℓ)((p(θ1, φ1))φ1,(j,ℓ)(p(θ2, φ2))

∣∣∣∣∣∣

≤ c1t
−1 exp

(
−c2

d1((p(θ1, φ1), (p(θ2, φ2))
2

t

)
.

We note finally that setting

d1,2(p(θ1, φ1),q(θ2, φ2)) = d1((p(θ1, φ1), (p(θ2, φ2)),

the function d1,2 : X1 × X2 satisfies a triangle inequality analogous to (3.9). �

Motivated by these examples, we make first the next definition of a joint distance.

Definition 3.1 Let (X1, d1), (X2, d2) be quasi–metric spaces. A function d1,2 : X1 × X2 → [0,∞), will be called a
joint distance for the pair of quasi–metric spaces if the following triangle inequalities are satisfied.

d1,2(x1, x2) ≤ c (d1(x1, x
′
1) + d1,2(x

′
1, x2)) , x1, x

′
1 ∈ X1, x2 ∈ X2,

d1,2(x1, x2) ≤ c (d1,2(x1, x
′
2) + d2(x

′
2, x2)) , x1 ∈ X1, x2, x

′
2 ∈ X2. (3.13)

We define
d2,1(x2, x1) = d1,2(x1, x2), x1 ∈ X1, x2 ∈ X2, (3.14)

For r > 0, x1 ∈ X1, x2 ∈ X2, we define the balls

B1(x1, r) = {z ∈ X1 : d1(x1, z) ≤ r}, B2(x2, r) = {z ∈ X2 : d2(x2, z) ≤ r}.
B1,2(x1, r) = {z ∈ X2 : d1,2(x1, z) ≤ r}, B2,1(x2, r) = {z ∈ X1 : d2,1(x2, z) ≤ r}. (3.15)

Next, we would like to allow more flexible connections than that provided by the matrix Γ as in (3.1). Example 3.2
demonstrates the need to do so. Another motivation is to incorporate some probablistic transition from a point
x1 ∈ X1 to x2 ∈ X2. These considerations prompt the following very general definition analogous to Definition 2.3.

Definition 3.2 Let Ξ1 = (X1, d1, µ
∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) be two admissible systems

as in Definiton 2.1, d1,2 be the joint distance between the two systems. Let A = (Aj,k)
∞
j,k=0, λ = (ℓj,k)

∞
j,k=0, where

each ℓj,k ≥ 0, and for each u > 0, the set {(j, k) : ℓj,k < u} is finite. We define formally for x1 ∈ X1, x2 ∈ X2,
t > 0, the joint heat kernel by

Kt(Ξ1,Ξ2;x1, x2) = Kt(Ξ1,Ξ2;A,λ;x1, x2) =

∞∑

j,k=0

exp(−ℓ2j,kt)Aj,kφ1,j(x1)φ2,k(x2)

= lim
n→∞

∑

j,k:ℓj,k<n

exp(−ℓ2j,kt)Aj,kφ1,j(x1)φ2,k(x2). (3.16)

We say that Ξ1, Ξ2 satisfy The joint Gaussian upper bound condition (with exponent Q > 0) if

∑

j,k:ℓj,k<n

|Aj,kφ1,j(x1)φ2,k(x2)| ≤ cnQ, n ≥ 2, (3.17)

the limit in (3.16) exists for all x1 ∈ X1, x2 ∈ X2, and

|Kt(Ξ1,Ξ2;x1, x2)| ≤ c1t
−c exp

(
−c2

d1,2(x1, x2)
2

t

)
, x1 ∈ X1, x2 ∈ X2. (3.18)

We will refer to A as the connection matrix, its elements as connection coefficients, and the numbers ℓj,k as
joint eigenvalues.
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Remark 3.1 When Ξ1 = Ξ2, A is the identity matrix, ℓj,k = λkδj,k, then (3.17) takes the form

∑

k:λk<n

exp(−λ2kt)|φ1,k(x1)|2 ≤ cnQ, x1 ∈ X1, n ≥ 2.

We have proved in [25, Proposition 4.1] that this is equivalent to the statement that

Kt(Ξ1,Ξ1;x1, x1) ≤ ct−Q/2, 0 < t < 1.

Thus, the joint Gaussian upper bound condition in Definition 3.2 reduces to the Gaussian upper bound condition
for a single system defined in Definition 2.3. �

Example 3.3 In the manifold case as in Example 2.1, if ψk is a derivative of φk, then an integration by parts
argument shows that {ψk} is a Bessel system. It is known that under certain conditions, the systems Ξ1 =
(X, d, µ∗, {λk}, {φk}), Ξ2 = (X, d, µ∗, {λk}, {ψk}) satisfy the joint Gaussian upper bound condition ([32] and refer-
ences therein). �

In the remainder of this section, let Ξ1 = (X1, d1, µ
∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) be two

admissible systems satisfying the joint Gaussian upper bound condition with exponent Q > 0, and d1,2, A, λ be as
in Definition 3.2.

Next, we define the analogues of the operators σn.
If h is a low pass filter, we define the kernel Φn for x1 ∈ X1, x2 ∈ X2 by

Φn(Ξ1,Ξ2;h, x1, x2) = Φn(Ξ1,Ξ2;A,λ;h, x1, x2) =

∞∑

j,k=0

h

(
ℓj,k
n

)
Aj,kφ1,j(x1)φ2,k(x2). (3.19)

If f ∈ L1(X2, µ
∗
2) + L∞(X2, µ

∗
2), x1 ∈ X1, n > 0, we define

σn(Ξ1,Ξ2;h, f, x1) = σn(Ξ1,Ξ2;A,λ;h, f, x1) =

∫

X2

f(x2)Φn(Ξ1,Ξ2;h, x1, x2)dµ
∗
2(x2)

=

∞∑

j,k=0

h

(
ℓj,k
n

)
Aj,kf̂(Ξ2; k)φ1,j(x1). (3.20)

Remark 3.2 In the case when the matrix A is the identity matrix, {φ1,j}, {φ2,k} are orthonormal systems, U is
a unitary operator from L2(X2, µ

∗
2) into L2(X1, µ

∗
1) such that φ2,k = U∗φ1,k for each k, then the kernels Φn and

the corresponding operators σn correspond to these quantities defined in Section 2.2 in the case when X1 = X2,
µ∗
1 = µ∗

2. Because of the special relationship between the two systems, the results in Section 2.2 are valid in this
more general context, assuming the Gaussian upper bound condition only for the system {φ1,j}, and not the system
{φ2,k}. In the greater generality of this section, where there is no such natural connection between the systems, we
need to assume a joint Gaussian upper bound condition for the following theorems to hold. �

Our generalization of Theorem 3.1 is the following.

Theorem 3.2 Let Ξ1 = (X1, d1, µ
∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) be two admissible systems

satisfying the joint Gaussian upper bound condition with exponent Q > 0, and A, λ as in Definition 3.2. Let h be
a sufficiently smooth low pass filter, and µ∗

1, µ
∗
2 satisfy the joint regularity condition

µ∗
1(B2,1(x2, r)) ≤ crq1 , µ∗

2(B1,2(x1, r)) ≤ crq2 , x1 ∈ X1, x2 ∈ X2, r > 0, (3.21)

for some constants c, q1, q2 > 0 independent of x1 and r. Let 1 ≤ p ≤ ∞, and f ∈ Lp(X2, µ
∗
2). We assume further

that there exists β > Q− q2 − (q1 − q2)/p such that for any n ≥ 1 and P ∈ Πn(Ξ2),

‖σ2m+1(Ξ1,Ξ2;A,λ;h, P )− σ2m(Ξ1,Ξ2;A,λ;h, P )‖X1,µ∗

1
,p ≤ c2−mβnQ−q2−(q1−q2)/p‖P‖X2,µ∗

2
,p, m = 1, 2, · · · .

(3.22)
If

∞∑

m=0

2m(Q−q2−(q1−q2)/p)E2m,p(Ξ2; f) <∞, (3.23)
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then limn→∞ σ2n(Ξ1,Ξ2;A,λ;h, f) = E(f) = E(Ξ1,Ξ2;A,λ; f) exists in the sense of Lp(X1, µ
∗
1) and

‖E(f)− σ2n(Ξ1,Ξ2;A,λ;h, f)‖X1,µ∗,p

≤ c

{
∞∑

m=n

2m(Q−q2−(q1−q2)/p)E2m,p(Ξ2; f) + 2n(Q−q2−(q1−q2)/p−β)‖f‖X2,µ∗

2
,p

}
. (3.24)

In particular, if α > 0, and αℓj,k ≥ λ1,j for all j, k = 0, 1, · · · , then σn(Ξ1,Ξ2;A,λ;h, f) ∈ Παn(Ξ1). Further, if
Q − q2 − (q1 − q2)/p < γ < β, and f ∈ Bp,ρ,γ(Ξ2) then E(f) ∈ Bp,ρ,γ−Q+q2+(q1−q2)/p(Ξ1).

Remark 3.3 In the case when p = 2, the condition (3.22) can be replaced by the condition that the spectral norms
of dyadic sectors (Aj,k)2m−1≤ℓj,k<2m, λ2,k<n are bounded from above by c2−mβnQ−q2−(q1−q2)/p. �

Remark 3.4 In Theorem 3.2, we do not assume that Q − q2 − (q1 − q2)/p > 0. Therefore, depending upon the
sign of this expression, E is a smoothing operator analogous to an integral operator, or smoothness preserving, or
coarsening operation analogous to a differential operator. �

Remark 3.5 The exponent in place of Q − q2 − (q1 − q2)/p in the “reverse” direction is Q − q1 − (q2 − q1)/p. If
Q 6= (q1+q2)/2, this is not equal to the negative of the first exponent. This leads to the fact that it may not hold in
general that under the conditions of Theorem 3.2, f ∈ Bp,ρ,γ(Ξ2) if and only if E(f) ∈ Bp,ρ,γ−Q+q2+(q2−q1)/p(Ξ1).
Moreover, in order to obtain f back from E(f), one needs a construction with A replaced by its “inverse” in some
sense, and with some restrictions on λ. We do not find it worthwhile to go into these details; this would lead only
to a more complicated re–statement of Theorem 3.2 in two directions, without adding any new concepts. One sided
analogues of Theorem 2.1 are quite easy to prove though, and we omit these details as well. �

Remark 3.6 In the scenario considered in Example 3.2, Q = q1 = q2 = 2, and β can be chosen arbitrarily large.
If f : X2 → C, The operator E(f) is the usual lifting to the sphere:

E(f)(p(θ, φ)) = f(q(θ, φ)),

without requiring (3.23). Theorem 3.2 then confirms the well known fact that E preserves the smoothness of the
function f . �

4 Proofs

4.1 Proofs of the theorems in Section 2.2 and Section 3.

Proof of Theorem 2.1. As we mentioned earlier, this theorem is a direct consequence of the fact that

f̂(Ξ′; k) =

∫

X

f(y)ψk(y)dµ
∗(y) =

∫

X

f(y)(U∗φk)(y)dµ
∗(y) = Ûf(Ξ; k),

so that
σn(Ξ,Ξ

′;h, f) = σn(Ξ,Ξ;h, Uf).

The statements (a), (b), (c) of this theorem follow from [48, Theorem 2.1], and the statement (d) follows from [48,
Theorem 3.1], applying these theorems with Uf in place of f . In [48], the conditions on the system Ξ were stated
in terms of upper bounds on

∑
k:λk<n |φk(x)|2 and the finite speed of wave propagation. These were shown in [25]

to be equivalent to the Gaussian upper bound condition. (See also Theorem 4.5 below.) �

It is convenient to prove Theorem 3.2 first, before Theorem 3.1. An important ingredient of our proof is the
following theorem.

Theorem 4.1 Let Ξ1 = (X1, d1, µ
∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) be two admissible systems

satisfying the joint Gaussian upper bound condition with exponent Q > 0, and A, λ as in Definition 3.2. Let h be
a sufficiently smooth low pass filter, and µ∗

1, µ
∗
2 satisfy the joint regularity condition (3.21). Let 1 ≤ p ≤ ∞, and

f ∈ Lp(X2, µ
∗
2). Then for n ≥ 1,

‖σn(Ξ1,Ξ2;h, f)‖X1,µ∗

1
,p ≤ cnQ−q2−(q1−q2)/p‖f‖X2,µ∗

2
,p, f ∈ Lp(X2, µ

∗
2). (4.1)
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Example 4.1 Taking Ξ1 = Ξ2, Q = q1 = q2, A to be the identity matrix, λ = {λjδj,k}, and {φ1,j} to be an
orthonormal system, we recover [48, Proposition 2.1]. This, in turn, leads to the other theorems in [48] used in the
proof of Theorem 2.1. �

Example 4.2 We consider an admissible system Ξ1 = (X, d, µ∗, {λk}, {φk}) as in Example 3.3 for X2, define ψk as
in that example, and let Ξ2 = (X, d, µ∗, {λk}, {ψk}). Then Theorem 4.1 leads, in particular, to [25, Theorem 2.1].
�

We will prove Theorem 4.1 by using the Tauberian theorem, Theorem 4.3, to be proved in Sub–section 4.2. For
reasons of organizational convenience, we assume this theorem in this section, and note that if h is a sufficiently
smooth low pass filter, then it can be extended to R as an even function, that satisfies the conditions on H stipulated
in Theorem 4.3.

In order to prove Theorem 4.1, we first prove a lemma.

Lemma 4.1 If µ∗
2 satisfies (3.21), then for S > q2,

∫

X2

dµ∗
2(x2)

max(1, (nd1,2(x1, x2)))S
≤ cn−q2 . (4.2)

Proof. In this proof only, let A0 = B1,2(x1, 1/n) and Am = B1,2(x1, 2
m/n) \B1,2(x1, 2

m−1/n), m = 1, 2, · · · . Then
(3.21) shows that

µ∗
2(Am) ≤ c(2m/n)q2 , m = 0, 1, · · · .

Consequently,

∫

X2

dµ∗
2(x2)

max(1, (nd1,2(x1, x2)))S
=

∞∑

m=0

∫

Am

dµ∗
2(x2)

max(1, (nd1,2(x1, x2)))S
≤ cn−q2

∞∑

m=0

2−m(S−q2) ≤ cn−q2 .

�

In the remainder of this section, we assume that h is sufficiently smooth so as to satisfy the conditions (4.17)–
(4.18) in Theorem 4.3 with S > max(q1, q2, Q+ 1).
Proof of Theorem 4.1. In this proof, we denote Φn(Ξ1,Ξ2;h, x1, x2) by Φn(x1, x2). For each x1 ∈ X1 and
x2 ∈ X2, we define the measure µ on [0,∞) by

µ([0, u)) = µ(x1, x2; [0, u)) =
∑

j,k:ℓj,k<u

Aj,kφ1,j(x1)φ2,k(x2), u ≥ 0. (4.3)

Using (3.17) and the fact that each of the functions φ1,j , φ2,k are bounded on their domains, it follows that (cf.
(4.15))

|||µ|||Q ≤ c, x1 ∈ X1, x2 ∈ X2. (4.4)

The estimate (3.18) is the same as (4.16) with d1,2(x1, x2) in place of r. Hence, the conditions of Theorem 4.3 are
satisfied. Therefore, Theorem 4.3 shows that for each x1 ∈ X1, x2 ∈ X2,

∣∣∣∣
∫ ∞

0

h(u/n)dµ(x1, x2;µ)

∣∣∣∣ =

∣∣∣∣∣∣

∞∑

j,k=0

h(ℓj,k/n)Aj,kφ1,j(x1)φ2,k(x2)

∣∣∣∣∣∣
= |Φn(x1, x2)| ≤ c

nQ

max(1, (nd1,2(x1, x2)))S
.

(4.5)
Therefore, Lemma 4.1 (applied once with µ∗

1 and once with µ∗
2 as stated) leads to

∫

X1

|Φn(x1, x2)|dµ∗
1(x1) ≤ cnQ−q1 , x2 ∈ X2,

and ∫

X2

|Φn(x1, x2)|dµ∗
2(x2) ≤ cnQ−q2 , x1 ∈ X1.

These inequalities lead to (4.1) for p = 1 and p = ∞ respectively. The general case follows by an application of the
Riesz–Thorin interpolation theorem. �
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Proof of Theorem 3.2. In this proof, we write σn(f) in place of σn(Ξ1,Ξ2;h, f), and q in place of Q − q2 −
(q1 − q2)/p. Let P ∈ Πn(Ξ2). Then (3.22) implies that

∞∑

m=0

‖σ2m+1(P )− σ2m(P )‖Ξ1,µ∗

1
,p ≤ c

∞∑

m=0

2−mβnq‖P‖Ξ2,µ∗

2
,p ≤ cnq‖P‖Ξ2,µ∗

2
,p. (4.6)

Therefore, there exists E(P ) ∈ Lp(X1, µ
∗
1) such that

E(P ) = σ1(P ) +

∞∑

m=0

(σ2m+1(P )− σ2m(P )) , (4.7)

where the series converges in the sense of Lp(X1, µ
∗
1). Moreover, E is a linear operation on Π∞(Ξ2). We conclude

from (4.1) and (4.6) that for m = 1, 2, · · · ,
‖E(P )‖X1,µ∗

1
,p ≤ cnq‖P‖X2,µ∗

2
,p, ‖E(P )− σ2m(P )‖X1,µ∗

1
,p ≤ cnq2−mβ‖P‖X2,µ∗

2
,p, P ∈ Πn(Ξ2). (4.8)

Next, let f ∈ Lp(X2, µ
∗
2). We find a sequence {Pm} such that each Pm ∈ Π2m(Ξ2), and

‖f − Pm‖X2,µ∗

2
,p ≤ cE2m,p(Ξ2; f), m = 0, 1, · · · .

Then Pm+1 − Pm ∈ Π2m+1(Ξ2), and a simple application of triangle inequality shows that

‖Pm+1 − Pm‖X2,µ∗

2
,p ≤ cE2m,p(Ξ2; f).

Therefore, if (3.23) holds, then (4.8) implies that

‖E(P0)‖X1,µ∗

1
,p +

∞∑

m=0

‖E(Pm+1)− E(Pm)‖X1,µ∗

1
,p ≤ c

{
‖P0‖X2,µ∗

2
,p +

∞∑

m=0

2mqE2m,p(Ξ2; f)

}
<∞. (4.9)

Consequently, there exists E(f) ∈ Lp(X1, µ
∗
1) such that

E(f) = E(P0) +
∞∑

m=0

(E(Pm+1)− E(Pm)) ,

with the series converging in the sense of Lp(X1, µ
∗
1). Moreover,

‖E(f)− E(Pn)‖X1,µ∗

1
,p ≤ c

∞∑

m=n

2mqE2m,p(Ξ2; f). (4.10)

Using this estimate, (4.1), and (4.8), we conclude that

‖E(f)− σ2n(f)‖X1,µ∗

1
,p ≤ ‖E(f)− E(Pn)‖X1,µ∗

1
,p + ‖E(Pn)− σ2n(Pn)‖X1,µ∗

1
,p + ‖σ2n(f − Pn)‖X1,µ∗

1
,p

≤ c

∞∑

m=n

2mqE2m,p(Ξ2; f) + c2n(q−β)‖Pn‖X2,µ∗

2
,p + c2nq‖f − Pn‖X2,µ∗

2
,p

≤ c

∞∑

m=n

2mqE2m,p(Ξ2; f) + c2n(q−β)‖f‖X2,µ∗

2
,p.

This proves (3.24), and in particular, the fact that E(f) = limn→∞ σ2n(f) in the sense of Lp(X1, µ
∗
1).

We observe that the sum expression in (3.20) involves non–zero terms only for j, k for which ℓj,k < n. If
αℓj,k ≥ λ1,j for j, k = 0, 1, · · · , then the only values of j for which the summand in (3.20) is non–zero are those for
which λ1,j < αn. Therefore, σn(f) ∈ Παn(Ξ1). Therefore, (3.24) implies that

Eα2n,p(Ξ1; f) ≤ c

{
∞∑

m=n

2mqE2m,p(Ξ2; f) + 2n(q−β)‖f‖X2,µ∗

2
,p

}
. (4.11)

If f ∈ Bp,ρ,γ(Ξ2), then by definition the sequence {2mqE2m,p(Ξ2, f)} is in bρ,γ−q. The discrete Hardy inequality
[21, Lemma 3.4, p. 27] implies that the sequence

{
∞∑

m=n

2mqE2m,p(Ξ2; f)

}∞

n=0

∈ bρ,γ−q.

Since β > γ > q, then {2n(q−β)}∞n=0 ∈ bρ,γ−q as well. Hence, (4.11) leads to the fact that E(f) ∈ Bp,ρ,γ−q. �

Next, we turn to the proof of Theorem 3.1. The analogue of Theorem 4.1 in this case is the following theorem.
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Theorem 4.2 Let Ξ1 = (X1, d1, µ
∗
1, {λ1,k}, {φ1,k}) and Ξ2 = (X2, d2, µ

∗
2, {λ2,k}, {φ2,k}) be two admissible systems

as in Definiton 2.1, each of which satisfies the Gaussian upper bound condition with exponents q1, q2 respectively,
where {φ1,j} and {φ2,k} are orthonormalized with respect to µ∗

1, respectively, µ
∗
2. Let Y be a measurable (with respect

to both µ∗
1 and µ∗

2) subset of X1 ∩ X2, ν
∗ be a probability measure on Y, Γj,k be defined as in (3.1). We assume

further that regularity condition (3.4) holds. Let 1 ≤ p ≤ ∞, f ∈ Lp(X2, µ
∗
2), and h be a sufficiently smooth low

pass filter. Then
‖σn,⊗(Ξ1,Ξ2;h, f)‖X1,µ∗

1
,p ≤ cnq1+(q2−q1)/p‖f‖X2,µ∗

2
,p. (4.12)

Proof. In this proof, we write for j = 1, 2, x, y ∈ Xj , f ∈ L1(Xj , µ
∗
j ),

Φn,j(x, y) =
∞∑

k=0

h

(
λj,k
n

)
φj,k(x)φj,k(y), σn,j(f)(x) =

∫

X

Φn,j(x, y)f(y)dµ
∗
j (y). (4.13)

We observe from the definitions that

Φn,⊗(Ξ1,Ξ2;h, x1, x2) =

∫

Y

Φn,1(x1, z)Φn,2(x2, z)dν
∗(z). (4.14)

As in the proof of Lemma 4.1, we see using (3.4) that
∫

X2

|Φn,⊗(Ξ1,Ξ2;h, x1, x2)|dµ∗
2(x2) ≤

∫

Y

|Φn,1(x1, z)|
∫

X2

|Φn,2(x2, z)|dµ∗
2(x2)dν

∗(z) ≤ cnq1 ,

and an analgous inequality holds with integrals on X1 instead. Hence, using the Riesz–Thorin theorem as in the
proof of Theorem 4.1, we arrive at (4.12). �

Proof of Theorem 3.1. This theorem proved exactly in the same way as in the proof of Theorem 4.1, using
Theorem 4.2 in place of Theorem 4.1. The condition on the joint eigen–values in Theorem 3.2 is superfluous in this
context; it is clear that if P ∈ Πn(Ξ2), then σn,⊗(Ξ1,Ξ2;h, P ) ∈ Πn(Ξ1). We omit the remaining details of this
proof. �

4.2 Tauberian theorem

We recall that if µ is an extended complex valued Borel measure on R, then its total variation measure is defined
for a Borel set B by

|µ|(B) = sup
∑

|µ(Bk)|,
where the sum is over a partition {Bk} of B comprising Borel sets, and the supremum is over all such partitions.

A measure µ on R is called an even measure if µ((−u, u)) = 2µ([0, u)) for all u > 0, and µ({0}) = 0. If µ is an
extended complex valued measure on [0,∞), and µ({0}) = 0, we define a measure µe on R by

µe(B) = µ ({|x| : x ∈ B}) ,

and observe that µe is an even measure such that µe(B) = µ(B) for B ⊂ [0,∞). In the sequel, we will assume
that all measures on [0,∞) which do not associate a nonzero mass with the point 0 are extended in this way, and
will abuse the notation µ also to denote the measure µe. In the sequel, the phrase “measure on R” will refer to an
extended complex valued Borel measure having bounded total variation on compact intervals in R, and similarly
for measures on [0,∞).

Our main Tauberian theorem is the following.

Theorem 4.3 Let µ be an extended complex valued measure on [0,∞), and µ({0}) = 0. We assume that there
exist Q, r > 0, such that each of the following conditions are satisfied.

1.

|||µ|||Q := sup
u∈[0,∞)

|µ|([0, u))
(u+ 2)Q

<∞, (4.15)

2. There are constants c, C > 0, such that
∣∣∣∣
∫

R

exp(−u2t)dµ(u)
∣∣∣∣ ≤ c1t

−C exp(−r2/t)|||µ|||Q, 0 < t ≤ 1. (4.16)
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Let H : [0,∞) → R, S > Q+ 1 be an integer, and suppose that there exists a measure H [S] such that

H(u) =

∫ ∞

0

(v2 − u2)S+dH
[S](v), u ∈ R, (4.17)

and

VQ,S(H) = max

(∫ ∞

0

(v + 2)Qv2Sd|H [S]|(v),
∫ ∞

0

(v + 2)QvSd|H [S]|(v)
)
<∞. (4.18)

Then for n ≥ 1, ∣∣∣∣
∫ ∞

0

H(u/n)dµ(u)

∣∣∣∣ ≤ c
nQ

max(1, (nr)S)
VQ,S(H)|||µ|||Q. (4.19)

The proof of Theorem 4.3 will be given in a number of steps. First, we will show that the conclusions of the
theorem are valid if they are valid when the function H is replaced by a special function. The next step is to show
that the theorem is valid if the distributional Fourier transform of µ is supported on (−∞,−2r] ∪ [2r,∞). The fi-
nal step is to prove that the assumptions in Theorem 4.3 imply this property for the distributional Fourier transform.

Step 1.

Let

xr+ =

{
xr , if x > 0,
0, if x ≤ 0.

(4.20)

The Bochner–Riesz summability method applied to µ is defined by

RS;n(µ) :=

∫

R

(
1− u2

n2

)S

+

dµ(u). (4.21)

Lemma 4.2 Let S > Q > 0, and µ be an even measure satisfying (4.15) (and µ({0}) = 0). If

RS;n(µ) ≤ c
(n+ 2)Q

max(1, (nr)S)
|||µ|||Q, n > 0, (4.22)

then (4.19) holds for all H satisfying (4.17), (4.18).

Proof. Without loss of generality, we may assume that |||µ|||Q = 1. Let n ≥ 1. Assuming that a change of the order
of integration below is valid, we obtain from (4.17) that

∫ ∞

0

H(u/n)dµ(u) =

∫ ∞

0

∫ ∞

0

(v2 − (u/n)2)S+dH
[S](v)dµ(u) = (1/2)

∫ ∞

0

RS;nv(µ)v
2SdH [S](v). (4.23)

We observe that for n ≥ 1, v ≥ 0,
(nv + 2) ≤ n(v + 2).

Therefore, the assumption (4.22) implies that if nr > 1 then

∣∣∣∣
∫ ∞

0

H(u/n)dµ(u)

∣∣∣∣ ≤ cnQ

∫ ∞

0

(v + 2)Qv2Sd|H [S]|(v)
max(1, (nrv)S)

= cnQ

{∫ 1/(nr)

0

(v + 2)Qv2Sd|H [S]|(v) + (nr)−S

∫ ∞

1/(nr)

(v + 2)QvSd|H [S]|(v)
}

=
cnQ

(nr)S

∫ ∞

0

(v + 2)QvSd|H [S]|(v). (4.24)

If nr ≤ 1, then (4.23) and (4.22) together imply that

∣∣∣∣
∫ ∞

0

H(u/n)dµ(u)

∣∣∣∣ ≤ cnQ

∫ ∞

0

(v + 2)Qv2Sd|H [S]|(v). (4.25)

Using the condition (4.18), we deduce (4.19) immediately from (4.24), (4.25).
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It remains to verify that the interchange of order of integration in (4.23) is justified. Using (4.15) and (4.18),
we observe that

∫ ∞

0

∫ ∞

0

(v2 − (u/n)2)S+d|µ|(u)d|H [S]|(v) =
∫ ∞

0

∫ nv

0

(v2 − (u/n)2)S+d|µ|(u)d|H [S]|(v)

≤
∫ ∞

0

v2S
∫ nv

0

d|µ|(u)d|H [S]|(v) ≤ nQ

∫ ∞

0

(v + 2)Qv2Sd|H [S]|(v) <∞.

This justifies the change of the order of integration, and completes the proof. �

Remark 4.1 The verification for the interchange of order of integration shows in particular that if VQ,S(H) <∞,
then

∫∞

0
|H(u/n)|d|µ|(u) <∞ for all n ≥ 1. �

Step 2.

Here we work with the support of the distributional Fourier transform of µ. We need first to recall a few facts
about distributions and their Fourier transforms, as well as certain facts from measure theory, mainly to establish
notation, and explain our abuse thereof.

A function φ : R → R is called a rapidly decreasing function (or test function) if it is infinitely differentiable
and |x|kφ(j)(x) → 0 as |x| → ∞ for all non–negative integers k, j. The space of all test functions is denoted by S,
and is a locally convex linear space. Its (continuous) dual is denoted by S ′, and a member of this dual is called a

(tempered) distribution. If φ ∈ S its Fourier transform φ̂ and inverse Fourier transform φ̃ are defined by

φ̂(x) =
1

2π

∫

R

φ(y) exp(−ixy)dy, φ̃(x) =

∫

R

φ(y) exp(ixy)dy, x ∈ R. (4.26)

Both φ̂ and φ̃ are test functions. Likewise, if µ ∈ S ′, its Fourier transform µ̂ and inverse Fourier transform µ̃ are
defined by

µ̂(φ) = µ(φ̂), µ̃(φ) = µ(φ̃), φ ∈ S. (4.27)

Clearly, both µ̂ and µ̃ are distributions. One has the inversion formulas

̂̃
φ =

˜̂
φ = φ, ̂̃µ = ˜̂µ = µ, φ ∈ S, µ ∈ S ′.

We refer the reader to [58, 59] for further information regarding Fourier transforms, and their properties.
If µ is a signed, extended complex valued, even, Borel measure on R, we will identify it with the corresponding

function on R, defined by u 7→ µ([0, |u|)), u ∈ R, and abuse the notation to denote both the measure and the function
by µ. The total variation measure |µ| of µ is also identified with the total variation function of the corresponding
function on R, and with the same abuse of notation. If there exists Q ≥ 0 such that |µ|((−u, u)) ≤ cuQ, u > 0,
then µ also defines an element of S ′ by the formula

µ(φ) =

∫

R

φdµ, |µ|(φ) =
∫

R

φd|µ|, φ ∈ S. (4.28)

One advantage of the identification between the measure, the function, and the distribution is that one can use
such theorems from measure theory as Fubini’s theorem, dominated convergence theorem, etc. in many cases
involving integration of test functions with respect to extended complex valued measures satisfying the condition
just described. In particular, it is often useful to integrate by parts in (4.28) to observe that

µ(φ) = −
∫

R

φ′(u)µ(u)du, |µ|(φ) = −
∫

R

φ′(u)|µ|(u)du, φ ∈ S. (4.29)

It is unfortunately customary to denote the measure, the function, and the distribution all by the same symbol,
with the corresponding abuse of notations regarding the Fourier transforms, e.g.,

µ̂(φ) =
1

2π

∫

R

φ̂dµ, φ ∈ S,

and we will follow this convention, with clarifying remarks in case we feel a cause for confusion. The support of a
function f : R → C, denoted by supp (f), is the closure of the set {x ∈ R : f(x) 6= 0}, and f is said to be supported
on any super–set of this set. The support of a measure µ on R that can be viewed as a distribution is the closure
of the set A ⊂ R such that

∫
R
φdµ = 0 for every φ ∈ S, supported on R \A.

We are now ready to state our auxiliary Tauberian theorem.
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Theorem 4.4 Let µ be an extended complex valued, even measure supported on R (with µ({0}) = 0). We assume
that there exist Q, r > 0, such that (4.15) holds, and the (distributional) Fourier transform µ̂ of µ is supported on
(−∞,−2r] ∪ [2r,∞). Then the conclusion of Therorem 4.3 holds.

In order to prove this theorem, we will show that the assumptions imply (4.22). First, we need a technical
lemma.

Lemma 4.3 Let S ≥ 2 be an integer. For every Y > 1, there exists an even function HY ∈ S such that

ĤY (x) = 0, |x| ≥ Y, (4.30)

∣∣∣∣
dk

duk
(1− u2)S+ −H

(k)
Y (u)

∣∣∣∣ ≤ cY k−S , u ∈ R, k = 0, 1, · · · , S − 1, (4.31)

and for any integer N ≥ 1,

|H(k)
Y (u)| ≤ c(N)(Y |u|)−N , |u| ≥ 2, k = 0, 1, · · · , S − 1. (4.32)

Proof. The proof is by a direct construction. In this proof, we denote F (u) = (1 − u2)S+. Since S ≥ 2, F has a
first derivative having a bounded total variation on R. Therefore, the Fourier inversion formula holds for F . The
Fourier transform of F is given in terms of the Bessel functions [65, p. 53] by

F̂ (x) =
S!2S−1/2

√
π

JS+1/2(x)

xS+1/2

=
S!2S−1

π

1

xS+1

{
eix

S∑

k=0

ik−S−1(S + k)!

k!(S − k)!(2x)k
+ e−ix

S∑

k=0

(−i)k−S−1(S + k)!

k!(S − k)!(2x)k

}
. (4.33)

Since F is supported on [−1, 1], F̂ is an entire function of finite exponential type 1. In this proof, let h be an
infinitely differentiable low pass filter. (Necessarily, h is a test function.) We define HY by

ĤY (x) = F̂ (x)h(x/Y ), x ∈ R, (4.34)

or equivalently,

HY (u) =
Y

2π

∫

R

F (v)h̃(Y (u− v))dv =
Y

2π

∫ 1

−1

F (v)h̃(Y (u− v))dv, u ∈ R. (4.35)

It is not difficult to verify from the definitions that ĤY ∈ S, and hence, HY ∈ S also . The equation (4.30) is also

clear from the definition of ĤY .
In this proof, let g(u) = h(u)− h(2u), u ∈ R, and for every integer n ≥ 1, Gn,Y be defined by

Ĝn,Y (x) = F̂ (x)g(x/(2nY )), Gn,Y (u) =
2nY

2π

∫

R

F (v)g̃(2nY (u− v))dv, x, u ∈ R. (4.36)

For every integer n ≥ 1, g(x/(2nY )) = 0 if |x| ≤ 2n−2Y or |x| ≥ 2nY . Therefore, the second equation in (4.33)
shows that for 0 ≤ k ≤ S − 1,

∣∣∣∣
̂
G

(k)
n,Y (x)

∣∣∣∣ = |x|k|Ĝn,Y (x)| ≤ c(2nY )k−S−1, x ∈ R. (4.37)

Since
̂
G

(k)
n,Y is supported on [−2nY,−2n−2Y ] ∪ [2n−2Y, 2nY ], the Fourier inversion formula implies that

∣∣∣G(k)
n,Y (u)

∣∣∣ ≤
∣∣∣∣∣

∫

2n−2Y≤|x|≤2nY

eiux
̂
G

(k)
n,Y (x)dx

∣∣∣∣∣ ≤ c(2nY )k−S , u ∈ R, k = 0, 1, · · · , S − 1.

Consequently,
∞∑

n=1

∣∣∣G(k)
n,Y (u)

∣∣∣ ≤ cY k−S , u ∈ R, k = 0, 1, · · · , S − 1, (4.38)
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and hence,

F (k)(u) = H
(k)
Y (u) +

∞∑

n=1

G
(k)
n,Y (u), u ∈ R, k = 0, 1, · · · , S − 1, (4.39)

where the series converges uniformly and absolutely on R. Moreover, (4.31) is clear from (4.39) and (4.38).
Next, we observe that for |u| ≥ 2, |v| ≤ 1, |u − v| ≥ (1/2)|u|. Since h̃ is a test function, (4.35) implies that for

|u| ≥ 2,

|H(k)
Y (u)| ≤ cY k+1

∫ 1

−1

|F (v)||h̃(k)(Y (u − v))|dv ≤ c(N)Y k+1(Y |u|)−k−1−N

∫ 1

−1

|F (v)|dv ≤ c(N)(Y |u|)−N .

�

We are now ready to prove Theorem 4.4.
Proof of Theorem 4.4. In this proof, we may assume without loss of generality that |||µ|||Q = 1. We will prove
(4.22). This estimate is clear immediately from (4.15) if nr ≤ 1. In this proof, we assume nr > 1, let Y = 2nr,

and HY denote the function as in Lemma 4.3. Then ĤY (·/n) is supported on (−2r, 2r). Since µ̂ is supported on
(−∞,−2r] ∪ [2r,∞), ∫

R

HY (u/n)dµ(u) = 0. (4.40)

Using (4.15), and (4.31) with k = 0, we deduce that

∣∣∣∣∣

∫ 2n

−2n

{(
1− u2

n2

)S

+

−HY (u/n)

}
dµ(u)

∣∣∣∣∣ ≤ c
(n+ 2)Q

(nr)S
. (4.41)

If |u| ≥ 2n, then (
1− u2

n2

)S

+

−HY (u/n) = −HY (u/n).

Using integration by parts and (4.32) with N = S > Q + 1, we obtain

∣∣∣∣∣

∫

|u|≥2n

{(
1− u2

n2

)S

+

−HY (u/n)

}
dµ(u)

∣∣∣∣∣

=

∣∣∣∣∣

∫

|u|≥2n

HY (u/n)dµ(u)

∣∣∣∣∣ ≤ |µ|(2n)HY (2) +
1

n

∣∣∣∣∣

∫

|u|≥2n

H ′
Y (u/n)µ(u)du

∣∣∣∣∣

≤ c(n+ 2)Q(nr)−S +
1

nrS

∫

|u|≥2n

uQ−Sdu

≤ cnQ(nr)−S . (4.42)

The estimate (4.22) follows from (4.40), (4.41), (4.42). In turn, Lemma 4.2 now implies Theorem 4.4. �

Step 3.

We will prove that the assumptions on the measure in Theorem 4.3 imply those in Theorem 4.4; i.e., we prove
the following theorem using some of the ideas in [60, 25].

Theorem 4.5 Let µ be an even measure satisfying (4.15). If there exist r, C > 0 such that (4.16) is satisfied. Then
the (distributional) Fourier transform µ̂ of µ is supported on (−∞,−2r] ∪ [2r,∞).

The proof of this theorem is fairly complicated, and is organized in the form of three preparatory lemmas.

Lemma 4.4 Let µ be an even measure satisfying (4.15), and R ≥ 4. If φ is a test function, and h is an infinitely
differentiable low pass filter, then for every integer N ≥ 2,

∣∣∣∣
∫

R

φ(u)h(u/R)dµ(u)−
∫

R

φ(u)dµ

∣∣∣∣ ≤
2Q+N+1

NRN

{
max

|x|≥R/2
|φ(u)uQ+N |+ max

|x|≥R/2
|φ′(u)uQ+N+1|

}
|||µ|||Q max

x∈R

|h′(x)|.
(4.43)
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Proof. Without loss of generality, we may assume that |||µ|||Q = 1. Since h is a low pass filter, 1− h(u/R) = 0 and
h′(u/R) = 0 if |u| < R/2. If |u| ≥ R/2 ≥ 2, (4.15) implies that |µ|(u) ≤ 2Q|u|Q. Therefore, using integration by
parts and (4.15), we obtain

∣∣∣∣
∫

R

φ(u)h(u/R)dµ(u)−
∫

R

φ(u)dµ(u)

∣∣∣∣ =

∣∣∣∣
∫

R

{
φ′(u)(1 − h(u/R))− 1

R
φ(u)h′(u/R)

}
µ(u)du

∣∣∣∣

≤ 2Q
∫

|u|≥R/2

|φ′(u)uQ+N+1| du

|u|N+1

+max
x∈R

|h′(x)|2
Q

R

∫

|u|≥R/2

|φ(u)uQ+N | du|u|N . (4.44)

We observe that since h is low pass filter, the mean value theorem implies that maxx∈R |h′(x)| ≥ 2. The estimate
(4.43) is now easy to deduce. �

Lemma 4.5 Let µ be an even measure satisfying (4.15), and φ : R → R be an infinitely differentiable function
supported on [0, b2] for some b > 0. Let ψ : R → R be defined by ψ(u) = φ(u2).
(a) The function ψ ∈ S.
(b) The function φ̂ can be extended to C as an entire function of finite exponential type ≤ b2, and for any integer
m ≥ 0,

|φ̂(z)| ≤ c exp(b2|ℑz|)
|z|m

∫

R

|φ(m)(u)|du, z ∈ C \ {0}. (4.45)

(c) If

F (z) =

∫ ∞

0

exp

(
− u2

4iz

)
dµ(u), z = x+ iy, y < 0, (4.46)

then

µ̂(ψ) =

∫

R

φ̂(−x− iy)(i(x+ iy)/π)−1/2F (x+ iy)dx, y < 0, (4.47)

where the principal branch of the square root is understood.

Proof. Part (a) is easy to verify using the chain rule of differentiation several times.
Defining

φ̂(z) =
1

2π

∫ b2

0

exp(−iuz)φ(u)du, z ∈ C,

it is clear that φ̂ extends the function φ̂ on R to C. The fact that this extension is an entire function of finite
exponential type ≤ b2 and (4.45) are elementary to verify. This proves part (b).

In view of (4.45), we may apply the Fourier inversion formula to deduce that

φ(u) = exp(uy)

∫

R

φ̂(−x− iy) exp(−ixu)dx, u, y ∈ R. (4.48)

Without loss of generality, we may assume that |||µ|||Q = 1. In this proof only, let h be an infinitely differentiable
low pass filter as in Lemma 4.4 and for u ∈ R, dµR(u) = h(u/R)dµ(u), R ≥ 4. Then µR is a function with bounded
total variation on R, |µR|(R) ≤ cRQ, R ≥ 2. Hence, µ̂R is an everywhere defined, even, and bounded function on
R, with |µ̂R(u)| ≤ cRQ, u ∈ R. In this proof, we write

gR(u) = u−1/2µ̂R(
√
u), u ∈ [0,∞), R ≥ 4.

Then ∫ ∞

0

φ(u)gR(u)du = 2

∫ ∞

0

φ(u2)µ̂R(u)du =

∫

R

ψ(u)µ̂R(u)du =

∫

R

ψ̂(u)dµR(u),

and Lemma 4.4 shows that

µ̂(ψ) =

∫

R

ψ̂(u)dµ(u) = lim
R→∞

∫ ∞

0

φ(u)gR(u)du. (4.49)

Next, we recall [59, Lemma 7.6] that

exp(−x2/2) = 1√
2π

∫

R

exp(−v2/2) exp(−ivx)dv.
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Let t > 0. Letting x = u/
√
2t, and v = w

√
2t, this leads to

exp(−u2/(4t)) =
√
t/π

∫

R

exp(−tw2) exp(−iwu)dw, u ∈ R.

Since µR is a measure of bounded total variation on R, we may use Fubini’s theorem to conclude that

∫

R

exp(−u2/(4t))dµR(u) =
√
t/π

∫

R

exp(−w2t)µ̂R(w)dw =
√
t/π

∫ ∞

0

exp(−tv)gR(v)dv, (4.50)

and hence, by analytic continuation that

FR(z) :=

∫

R

exp(−u2/(4iz))dµR(u) =
√
iz/π

∫ ∞

0

exp(−izv)gR(v)dv, z ∈ C, ℑz < 0. (4.51)

In view of (4.45), we see that exp(uy)φ̂(−x− iy)gR(u) is absolutely integrable with respect to dxdu on R× [0,∞)
if y < 0. Using (4.48), (4.51), we deduce that for y < 0, R ≥ 2,

∫ ∞

0

φ(u)gR(u)du =

∫ ∞

0

gR(u)

{
exp(uy)

∫

R

φ̂(−x− iy) exp(−ixu)dx
}
du

=

∫

R

φ̂(−x− iy)

{∫ ∞

0

exp(−i(x+ iy)u)gR(u)du

}
dx

=

∫

R

φ̂(−x− iy)(i(x+ iy)/π)−1/2FR(x + iy)dx. (4.52)

If z = x + iy, y < 0, then it is elementary calculus to check that for every L > 0, |uL exp(−u2/(4iz))| ≤
c(L)|z|L|y|−L/2, and hence, (4.45) implies that for such z,

|φ̂(−x− iy)(i(x+ iy)/π)−1/2FR(x+ iy)| ≤ c(L, y)|z|−2.

Therefore, using Lemma 4.4, the dominated convergence theorem, and (4.49), we arrive at (4.47) by letting R→ ∞
in (4.52). This proves part (c). �

Lemma 4.6 Let µ be an even measure satisfying (4.15) and (4.16), and F be defined by (4.46). Then

|F (x+ iy)| ≤ c|z|A exp(4r2) exp(4r2y), y ≤ −1, x ∈ R, (4.53)

where A is the least integer ≥ max(C,Q).

The proof of this lemma requires the Phragmén–Lindelöf theorem [49, Vol. II, Theorem 7.5], the required part
of which we reproduce for the convenience of the reader.

Theorem 4.6 Let D be the interior of an angle of απ, 0 ≤ α ≤ 2, with boundary Γ, and f be analytic on D. With

M(f, v) = sup
|z|=v,z∈D

|f(z)|,

let
lim sup

z→ξ
|f(z)| ≤ C <∞, ξ ∈ Γ ∩ C, (4.54)

and

lim inf
v→∞, v∈D

log logM(f, v)

log v
< 1/α, (4.55)

then
|f(z)| ≤ C, z ∈ D. (4.56)

Proof of Lemma 4.6. We will use the Phragmén–Lindelöf theorem with

G(z) = exp(4r2iz)z−AF (z), z ∈ C, ℑz < 0,
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in place of f . We note that G is analytic in the domain as indicated. The estimate (4.16) implies that

|F (−it)| =
∣∣∣∣
∫ ∞

0

exp(−u2/(4t))dµ(u)
∣∣∣∣ ≤ ctC exp(−4r2i(−it)), t ≥ 1/4.

In particular,

|G(z)| ≤ c, z = −it, t ≥ 1/4. (4.57)

Also, using (4.29) and (4.15), we deduce that for z = x− iy, x ∈ R, y > 0,

|F (x− iy)| ≤
∫ ∞

0

∣∣∣∣exp
(
− u2

4i(x− iy)

)∣∣∣∣ d|µ|(u) =
∫ ∞

0

exp(−u2y/(4|z|2))d|µ|(u)

=
y

2|z|2
∫ ∞

0

u exp(−u2y/(4|z|2))|µ|(u)du

≤ cy

|z|2
∫ ∞

0

uQ+1 exp(−u2y/(4|z|2))du

=
c|z|Q
yQ/2

∫ ∞

0

uQ/2e−udu. (4.58)

Using this estimate with z = x− i, we obtain that

|G(z)| =
∣∣exp(4r2iz)z−AF (z)

∣∣ ≤ c exp(4r2), z = x− i, x ∈ R. (4.59)

The estimate (4.58) shows further that the condition (4.55) is satisfied if z ∈ C, ℑz ≤ −1. Thus, we may apply
the Phragmén–Lindelöf theorem with G, once taking D to be the sector bounded by {z = x − i, x ≥ 0} and
{z = −it, t ≥ 1} and then with the sector bounded by {z = x − i, x ≤ 0} and {z = −it, t ≥ 1} to deduce (4.53)
from (4.57) and (4.59). �

Proof of Theorem 4.5. Let 0 < b < 2r, ǫ > 0 and ψ ∈ S be an even function supported on [−b,−ǫ]∪ [ǫ, b]. Then
there is an infinitely differentiable function φ supported on [ǫ2, b2] such that ψ(u) = φ(u2). With F as in (4.46),
Lemma 4.5 and Lemma 4.6 imply that for y < −1,

|µ̂(ψ)| =
∣∣∣∣
∫

R

φ̂(−x− iy)(i(x+ iy)/π)−1/2F (x+ iy)dx

∣∣∣∣ ≤ c exp(4r2) exp(−(4r2 − b2)|y|).

Since 0 < b < 2r, the right hand side of this inequality tends to 0 as y → −∞. Hence µ̂(ψ) = 0. Since ǫ, b, and ψ
were arbitrary, this implies that µ̂ is supported on [−∞,−2r] ∪ [2r,∞). �

Finally, we are in a position to put together the results in the three steps above to complete the proof of
Theorem 4.3.

Proof of Theorem 4.3. In view of Theorem 4.5, the condition (4.16) implies that the support of µ̂ is contained
in (−∞,−2r] ∪ [2r,∞). Theorem 4.3 follows immediately from Theorem 4.4. �
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[47] Z.-M. Ma and M. Röckner. Introduction to the theory of (non-symmetric) Dirichlet forms. Springer, 1992.

[48] M. Maggioni and H. N. Mhaskar. Diffusion polynomial frames on metric measure spaces. Applied and Com-
putational Harmonic Analysis, 24(3):329–353, 2008.

[49] A. I. Markushevich. Theory of functions of a complex variable, volume 296. American Mathematical Soc.,
2005.

[50] H. N. Mhaskar. Eignets for function approximation on manifolds. Applied and Computational Harmonic
Analysis, 29(1):63–87, 2010.

27



[51] H. N. Mhaskar. A generalized diffusion frame for parsimonious representation of functions on data defined
manifolds. Neural Networks, 24(4):345–359, 2011.

[52] H. N. Mhaskar and J. Prestin. Polynomial frames: a fast tour. Approximation Theory XI: Gatlinburg, pages
101–132, 2004.

[53] T. B. Moeslund. Introduction to video and image processing: Building real systems and applications. Springer
Science & Business Media, 2012.

[54] S. Mousazadeh and I. Cohen. Embedding and function extension on directed graph. Signal Processing, 111:137–
149, 2015.

[55] Y. Nakatsukasa, Z. Bai, and F. Gygi. Optimizing Halley’s iteration for computing the matrix polar decompo-
sition. SIAM Journal on Matrix Analysis and Applications, 31(5):2700–2720, 2010.

[56] S. M. Nikolskii. Approximation of functions of several variables and imbedding theorems. Springer Verlag, 1975.

[57] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,
290(5500):2323–2326, 2000.

[58] W. Rudin. Real and complex analysis. Tata McGraw-Hill Education, 1987.

[59] W. Rudin. Functional analysis. international series in pure and applied mathematics, 1991.

[60] A. Sikora. Riesz transform, Gaussian bounds and the method of wave equation. Mathematische Zeitschrift,
247(3):643–662, 2004.

[61] A. Singer. From graph to manifold Laplacian: The convergence rate. Applied and Computational Harmonic
Analysis, 21(1):128–134, 2006.
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