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Summary. For regularly spaced one-dimensional data, wavelet shrinkage has proven to be
a compelling method for non-parametric function estimation. We create three new multiscale
methods that provide wavelet-like transforms both for data arising on graphs and for irregularly
spaced spatial data in more than one dimension. The concept of scale still exists within these
transforms, but as a continuous quantity rather than dyadic levels. Further, we adapt recent
empirical Bayesian shrinkage techniques to enable us to perform multiscale shrinkage for func-
tion estimation both on graphs and for irregular spatial data. We demonstrate that our methods
perform very well when compared with several other methods for spatial regression for both real
and simulated data. Although we concentrate on multiscale shrinkage (regression) we present
our new ‘wavelet transforms’ as generic tools intended to be the basis of methods that might
benefit from a multiscale representation of data either on graphs or for irregular spatial data.
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1. Introduction

1.1. Background
Over the last decade a large variety of wavelet methods have been introduced to several different
areas of statistics such as curve estimation (regression, density estimation, intensity estimation
and survival function estimation), time series analysis, functional data analysis and image warp-
ing. See, for example, Vidakovic (1999), Silverman and Vassilicos (2000), Percival and Walden
(2000) and Abramovich et al. (2000) for reviews. Nearly all work in the statistical area has
been based on the fast discrete wavelet transform that was invented by Mallat (1989), the major
exception being work in statistical inverse problems, which has relied on Fourier transformation
and Meyer wavelets; see Johnstone et al. (2004) for a recent review.

Existing work in wavelet-based function estimation has typically made use of the following
model and assumptions. Let x.t/ be some function that we are interested in for some t either on
R or some interval [a, b]. Suppose that "i is independent and identically distributed Gaussian
with mean 0 and constant variance σ2. Let ti = i=n. We observe
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yi =xi + "i .1/

where xi =x.ti/, yi =y.ti/ and i=1, . . . , n. Key features of this model are as follows.

(a) The number of observations, n, is a power of 2, say n=2J for some J ∈N. This restriction
is not too difficult to overcome even when using fast wavelet transforms.

(b) The data are observed on the regular grid ti = i=n. This assumption enables direct use
of standard wavelet (and Fourier) discrete transforms. When data are irregularly dis-
tributed various methods, such as binning or interpolation to a regular grid, have been
proposed, e.g., in one dimension, Antoniadis et al. (1997), Hall and Turlach (1997), Cai
and Brown (1999), Sardy et al. (1999), Kovac and Silverman (2000), Antoniadis and Fan
(2001), Pensky and Vidakovic (2001), Nason (2002) and Kohler (2003). Herrick (2000)
extended the interpolation method of Kovac and Silverman (2000) to two dimensions but
found the resulting procedure too computationally intensive to be of any practical use.
Recently a new ‘second-generation’ wavelet-like paradigm called ‘lifting’ has been devel-
oped, which can handle multidimensional irregularly spaced data that commonly arise in
statistics. For a quick introduction to lifting see Sweldens (1996). Lifting is the mathemat-
ical foundation of our work and it is described in more detail, with references, in Section 2.
Adaptations of lifting to curve estimation problems in one dimension are discussed in
Vanraes et al. (2002) and Delouille et al. (2004). For lifting half-regular designs (tensor
products of two one-dimensional irregular designs) see Delouille and von Sachs (2002).
In two dimensions curve estimation with lifting has been tackled by Delouille (2002) and
Delouille et al. (2003): this work and the current paper both develop and build on Jansen
et al. (2001).

(c) The error distribution is independent and identically distributed Gaussian with zero mean
and constant variance. Various researchers have weakened these assumptions. For exam-
ple, see Johnstone and Silverman (1997) for correlated noise and Neumann and von Sachs
(1995) and Averkamp and Houdré (2003) for non-Gaussian noise.

The main advantages of using wavelets are their excellent theoretical properties, excellent empir-
ical performance both for smooth functions and also for those with discontinuities or other
inhomogeneities (even when, a priori, it is not explicitly known whether the function is smooth
or not) and fast computational speed.

1.2. Our main contributions
The main contribution of our work can be summarized as follows. We introduce

(a) a wavelet-like transform for data on a graph,
(b) wavelet-like transforms for irregularly spaced data in two- or higher dimensional space

and
(c) statistical methods for function estimation adapted to these new wavelet-like transforms.

Our proposed methods perform very well, they are rotationally invariant, extremely fast and
memory efficient, can provide credible intervals as well as ‘point estimates’ through empiri-
cal Bayes methods, and can very easily be extended to use smoother basis functions. See the
end of this section for a discussion of the pros and cons of our methods compared with other
techniques.

The multiscale concept is particularly powerful for data that arise on networks permitting,
for the first time, the description and quantification of structure within a graph at several scales
and locations simultaneously. From now we shall be solely concerned with Gaussian indepen-
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dent and identically distributed noise but several of the techniques that were mentioned above
for generalizing the distributional assumptions could be made to work efficiently with our
technique.

A key concept in many spatial regression contexts, including ours, is that of neighbourhoods,
i.e., given a point, which other points are ‘close’ and which are its neighbours? In one dimen-
sion, with the order relation on R, neighbourhoods can be more straightforwardly defined. The
closest points to a given point are the smallest or largest point that is greater or less than the
given point respectively. In more than one dimension there are many possible neighbourhood
concepts that could be used. Some problems come with their own neighbourhood structure.
Where there is no a priori neighbourhood structure we use either Voronoi polygons or minimal
spanning trees (MSTs) to define neighbourhoods, which are utilized by a lifting technique.

We also carefully analyse the variance structure of the lifted wavelet coefficients and develop
a novel Bayesian wavelet shrinkage technique, which works in the absence of formal scales (for
irregularly spaced data the dyadic scale concept is artificial).

1.3. Other methods for function estimation
As the previous section highlights, one of our goals is to use our newly created lifting or wave-
let transforms for function estimation. For function estimation there is an enormous range of
alternatives developed across a huge range of disciplines including many in statistics. Those
which we have considered, and compared with our methods, in writing this paper are LOESS
by Cleveland and Devlin (1988), triograms (see Hansen et al. (1998) and Koenker and Mizera
(2004)), locfit (see Loader (1997)), thin plate splines (see Wahba (1990) and Green and Silver-
man (1993)) and kriging (see Cressie (1993)). The last two sets of comparisons are to be found
in Heaton and Silverman (2008); the others in Section 7. There are many more possibilities,
e.g. partition models (Denison et al., 2002), stationary and non-stationary Gaussian processes,
Gaussian Markov random fields (see Rue and Held (2005)) and empirical orthogonal functions
(see Jolliffe (2002) and, for graphs and network kriging, see Chua et al. (2006)).

Although our methods compare favourably with the first group of methods listed above,
our main aim is not to conduct a ‘regression olympics’. As well as developing a new regres-
sion method our main goal is to introduce new multiscale algorithms (for graph and irregular
data) and several of the techniques that were listed above could be used in conjunction with
our new multiscale algorithms. For example, one might wish to construct a Gaussian Markov
random-field model on the ‘wavelet coefficients’ of a structure.

However, we do believe that our methods have a strong set of advantages.

(a) Our methods are fast and efficient in storage and for the multiscale part require O.n/

operations for n sites. For the Voronoi version, the Voronoi tessellation can be computed
in O{n log.n/} operations (see, for example, Fortune (1987)). It is not always easy to
discover the computational complexity of some of the methods that were listed above.
However, empirical orthogonal functions are based on eigenvector determination (O.n3/),
LOESS is quadratic in storage and some of the above algorithms rely on variants of
Markov chain Monte Carlo sampling which do not scale well to large problems.

(b) Our methods are rotationally invariant. Some of the above methods are not.
(c) Our methods are easily extendable to smoother ‘predict’ and ‘update’ steps (see later for

an explanation of these). For methods such as triograms extensions to smoother basis
functions are not trivial (see Hansen et al. (1998)). Moreover, our methods can even be
further developed to adapt to local smoothness conditions by use of adaptive lifting (see
Nunes et al. (2006) for this in one dimension).
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(d) On a range of real and simulated examples that are reported in Section 7, our methods
work well. The examples include both discontinuous and smooth functions. It is reassur-
ing that a method that was developed to allow for possible discontinuities also works well
in the smoother case.

The main disadvantage is that, apart from analogies with regular wavelets, there is currently no
substantial body of theory behind our methods. We discuss the reasons for this in Section 8, but
some theoretical remarks are addressed in Section 5.

1.4. Krill intensity estimation example
We first consider an example that existing wavelet techniques would find difficult to solve and
other statistical techniques, such as kriging, might find challenging. Goss and Everson (1996)
described an experiment that was designed to quantify the amount and distribution of krill in
the south Atlantic ocean around South Georgia. Fig. 1 shows the interesting sampling design
and a depiction of the detected krill density. Clearly, the design is very far from being a reg-
ular grid, but it does have a very strong structure, which we might wish to take into account
when performing spatial regression. For example, in some applications we might be interested
in regression on the transect itself, or in regression over the whole domain of definition exclud-
ing, presumably, the island, where it is known a priori that the krill intensity is zero. Indeed,
the presence of structure or a hole in the data (e.g. an island) would be challenging for more
global multivariate regression techniques. Our techniques can take account of various kinds of
structure of this sort and are applied to this data set in Section 7.1.

1.5. Structure of the paper
Section 2 first reviews lifting and then introduces our variation on the theme ‘lifting one coeffi-
cient at a time’, then describes our scheme for irregular spatial data and graphs, and finally
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Fig. 1. Example krill sampling scheme: the island of South Georgia is shown at the bottom left-hand side;
each sample is indicated by a circle and the diameter, which is proportional to the density of krill detected at
that location (the figure was kindly supplied by Alistair Murray, British Antarctic Survey)
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describes an efficient computational approximation for the variance of our lifting coefficients.
Section 3 describes our version of lifting to be applied to a function on a graph (a network).
Such a network might be constructed from, for example, irregularly spaced data in Euclidean
space or the data themselves might naturally arise in the form of a network. For example, in
a rail transportation network we might think of stations either as irregularly spaced points
in two-dimensional space or we might think of them as nodes in a network where the edges
are railway lines. For irregular data in Euclidean space Section 4 uses a Dirichlet tessellation
to define neighbourhoods and constructs a lifting transform by using those neighbourhoods.
Successful wavelet shrinkage depends on good compression abilities of the underlying wavelet
transform. Section 5 explores the theoretical basis for our work and describes some compres-
sion studies. Section 6 details the new techniques that we use to perform coefficient shrinkage
on ‘one coefficient at a time’ lifting transforms. ‘Scale’ in lifting can be more of a continuous
concept and the fixed dyadic scales of the regular discrete wavelet transform no longer exist in
our work. We describe several empirical Bayes methods that were designed to work with the
more general concept of scale. Section 7 contains a real life example and summarizes several
simulation studies. The real example considers regression of the krill data where co-ordinate
information is used. A further real life example, which is concerned with denoising of train delay
data on a rail network, can be found in Jansen et al. (2008). Finally, Section 8 concludes and
provides ideas for further work.

2. General discussion of lifting

2.1. The lifting approach to the standard discrete wavelet transform
Let us begin with a general specification of lifting as it has been considered previously. Given a
vector x of data, we divide the indices of x into two subsets, which are denoted I and J for the
moment. For example, in one dimension, I might be the odd indices and J the even. Denote by
xI the vector .xi, i∈ I/ and xJ the vector .xj, j ∈J/. A single lifting step works as follows.

(a) Predict—use xJ to yield an appropriate predictor x̃I of xI , and the residual is .xI/Å =
xI − x̃I.

(b) Update—update xJ by adding to xJ a suitable linear transform of .xI/Å.

A specific example is the Haar transform of the data. Suppose that the original vector x is
of length 16 (for definiteness). Initially, define I to be the odd indices {1, 3, 5, 7, 9, 11, 13, 15},
and J to be the even indices {2, 4, 6, 8, 10, 12, 14, 16}. The prediction is carried out by estimating
each odd-indexed element by the next element in the sequence, so x̃2m−1 =x2m for m=1, . . . , 8.
Hence the modified coefficients .xI/Å are given by xÅ

2m−1 = x2m−1 − x2m. These correspond to
the ‘detail’ coefficients in the Haar transform of the data. The update step is defined by

xÅ
2m =x2m + 1

2 xÅ
2m−1 = 1

2 .x2m−1 +x2m/

so the .xJ /Å represent ‘scale’ coefficients at the next level, a smoothed version of the original
data.

The lifting steps can be performed ‘in place’ by the two assignments

xI :=xI −xJ followed by xJ :=xJ + 1
2 xI: .2/

For the next step of the Haar transform, we proceed in exactly the same way, setting I =
{2, 6, 10, 14} and J = {4, 8, 12, 16}. These correspond to the odd and even indices of the scale
coefficients at the previous level. We then continue the cascade by setting I = {4, 12} and J =
{8, 16}, and for the final step I ={8} and J ={16}: This completes the entire multi-resolution
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analysis of the original vector x, and the coefficients obtained are, in a suitable order, rescaled
versions of those obtained by the Mallat discrete wavelet transform. At each stage of the process,
the current scale coefficients are divided into two equal sets, one of which is processed in the
predict step to give the detail coefficients, and the other is updated to give the scale coefficients
for the next stage.

The description that we have given uses the Haar transform for simplicity, but all classical
wavelet filter banks can be factored into a sequence of lifting steps (see Daubechies and Sweldens
(1998)).

An attractive feature of lifting is that the inverse transform can be constructed mechanically.
Step (2) is inverted by reversing the assignment order, and changing the signs, to give

xJ :=xJ − 1
2 xI followed by xI :=xI +xJ : .3/

To invert the whole transform, the steps are considered in the opposite order, starting with I =
{8} and J ={16} and finishing with I ={1, 3, 5, 7, 9, 11, 13, 15} and J ={2, 4, 6, 8, 10, 12, 14, 16}.

2.2. Lifting one coefficient at a time
When considering the standard wavelet transform, the sets I and J correspond to odd and even
indices at the current level. We shall consider a different approach, where each set I is just a
single coefficient. The general paradigm that we adopt will be as follows.

The first step is to construct an order in, . . . , il+1 in which the wavelet coefficients, or their
equivalents, will be obtained. Our reason for numbering in reverse order is the analogy with
scale levels in the standard wavelet transform; the first coefficients to be found will be those cor-
responding to the finest level of detail in the function, and at the end of the process l coefficients
will remain, corresponding to the scaling coefficients at level l.

For each ir, we construct, by some appropriate means, a set of nr ‘neighbours’ Jr, which may
not contain any is for s>r. The underlying notion is that the values xj for j ∈Jr may reasonably
be used to construct at least an approximate prediction of xir . For each r, our lifting transform
requires the definition of two vectors ar and br, each of length nr.

At each stage, the transform consists of the same two steps as previously, firstly redefining
xi to be its residual from the prediction from its neighbours, and then updating the neighbour
values appropriately. To avoid notational clutter, we suppress the explicit dependence on r of i,
J , a and b. The step of the transform can then be written

predict, xi :=xi −a′xJ , followed by update, xJ :=xJ +xib: .4/

Again, just as before, the inverse of this transform can be written down mechanically, by
reversing the order of the steps and changing the signs:

xJ :=xJ −xib followed by xi :=xi +a′xJ : .5/

For computational purposes, it is convenient to specify and store the transform in a standard
format, as a ragged array with n− l rows. We call this the lifting coefficient array. The sth row
of the array corresponds to r =n+1− s and consists of the sequence of 3nr +2 integers

ir nr Jr ar br:

The computational burden of lifting is the same in order of magnitude as the number of elements
in the lifting coefficient array and is certainly O.Mn/ where M =max{nr}.

In the remainder of the paper we shall consider ways of constructing the lifting coefficient
array, with particular attention paid to the case of spatial irregular data. Even the Haar trans-
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form as already discussed can be calculated one coefficient at a time. The order in which the
indices are considered would be first the odd indices, in any order, then the indices that are not
divisible by 4, then those not divisible by 8, and so on. In every case each index would have a
single neighbour, so that nr =1, and we would have ar =1 and br = 1

2 . The neighbour Jr would
be, in every case, the smallest integer j> ir that is not a member of ir+1, . . . , in.

Further information on lifting in more than one dimension for data that are not on a lattice
can be found in Daubechies et al. (1999). For data on a lattice see see Uytterhoeven and Bultheel
(1997) and Kovačević and Sweldens (2000).

2.3. Aspects of lifting transforms for spatial irregular data
In this section, some specific issues that are relevant to lifting transforms for spatial irregu-
lar data are considered, but the discussion has wider validity for methods that are based on
neighbours in any sense.

Suppose that we have values fi of a function at n points, or sites, ti. Initially, we assume that
the function is approximated by an expansion of the form

f.t/=
n∑

k=1
cnk φnk.t/ .6/

where φnk are scaling functions such that

φnk.ti/= δik: .7/

Here δik is the Kronecker delta, at least approximately. If the scaling functions satisfy condition
(7) exactly then the function f will interpolate the values fi if we set cnk =fk. Denote by Ink the
integral of φnk with respect to some suitable measure.

The stages of our procedure are numbered downwards from n, so the first stage to be carried
out is stage n, followed by n−1, n−2, . . . . At stage r, let Sr be the indices of the scaling coeffi-
cients, in other words those indices for which no wavelet coefficient has yet been calculated.
Initially Sn = {1, . . . , n}. Let Dr = {ir+1, . . . , in}, the indices of the detail coefficients already
found.

We assume that we have an expression for f of the form

f.t/= ∑

l∈Dr

dl ψl.t/+ ∑

k∈Sr

crk φrk.t/ .8/

where the ψl are wavelet functions with zero integral, and the φrk are scaling functions at level
r, with integral Irk. We now set out the process whereby the various quantities, functions and
sets are updated to the next stage, whereby we find an expression corresponding to equation (8)
but with r replaced by r −1.

Firstly, choose ir to be the value of k that minimizes Irk over k in Sr; writing i= ir, the next
wavelet coefficient to be constructed is dir , say. At every stage, we eliminate the scaling function
with smallest integral. Set Sr−1 =Sr \ ir and Dr−1 =Dr ∪ ir.

Let Jr =J be the set of neighbours of ir as specified in the lifting coefficient array. The specifi-
cation of Jr and the weight vector ar will depend on the particular lifting strategy that we adopt
and will be discussed in subsequent sections of the paper. We calculate the coefficient dir in the
way that is specified in expression (4), setting

dir = crir − ∑

j∈Jr

ar
jcrj .9/

and, for j in Jr,
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cr−1,j = crj +bjdir : .10/

For all other j in Sr−1 we set cr−1,j = crj.
If the function f.t/ is constant in the neighbourhood of the site tir we would wish the wavelet

coefficient to be 0, so we conduct the predict step with a set of weights satisfying Σar
j =1. With

judicious choice of weights we can obtain a zero coefficient for locally linear functions and a
near-zero coefficient for locally smooth functions, but this will be discussed below.

We next set out the way that the scaling functions are updated. For any fixed j ∈Jr, consider
the special case f.t/=φr−1,j.t/. For this f , from equation (8), we have cr−1,j = 1 and all other
cr−1,s, s �= j, and ds equal to 0 for s = ir, . . . , in. Hence, inverting the lifting steps, crj = 1, from
equation (10), and crir =aj from equation (9). Therefore, by the expansion (8) for f ,

φr−1,j =φrj +ar
jφrir : .11/

To find the integrals of the scaling functions at the next stage, integrate equation (11) to obtain

Ir−1,j = Irj +ar
jIrir for each j ∈Jr: .12/

For j in Sr−1 that are not members of Jr, the same argument with ar
j = 0 gives crj = cr−1,j as

well as crir =0. This implies that φr−1,j =φrj and Ir−1,j = Irj.
To find an expression for the wavelet, we now consider f =ψir , so that dir = 1 and all other

coefficients at stage r −1 are equal to 0. From equation (10) we then have crj =−br
j for j in Jr.

Equation (9) then gives crir =1−Σj∈Jr ar
jbr

j. Therefore we have

ψir .t/= .1− ∑

j∈Jr

ar
jbr

j/ φrir .t/− ∑

j∈Jr

br
j φrj.t/

=φrir .t/− ∑

j∈Jr

br
j{φrj.t/+ar

j φrir .t/}

=φrir .t/− ∑

j∈Jr

br
j φr−1,j.t/, .13/

by substituting expression (11).
The weights br

j are found from the requirement that the integral of the wavelet is 0. By inte-
grating equation (13), this requirement is equivalent to

∑

j∈Jr

br
jIr−1,j = Irir , .14/

where the integrals Ir−1,j have been found by using expression (12). For reasons of numerical
stability, we use the minimum norm solution of equation (14), setting

br
j = Irir Ir−1,j

/ ∑

k∈Jr

I2
r−1,k: .15/

Within the process it is not necessary to express the wavelets or scaling functions explicitly,
but the integrals of the scaling functions choose the coefficient ir and specify the weight vector
br. Therefore, to initiate the process, the integrals Inj of the original scaling functions need to
be specified. Apart from these integrals, we also need appropriate ways of choosing the vectors
Jr and ar of neighbours and prediction weights at each stage. We shall consider two particular
approaches in detail later in the paper: the first based on Voronoi polygons and the second on
MSTs.

Finally, there are circumstances within which it is helpful to have a notion of the scale of each
wavelet function. A convenient measure of this scale for the wavelet ψi for ir is the integral Irir

of the scaling function for site ir at the last stage before ir is removed from future consideration.
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We denote this scale by αir . In the natural neighbour method that is described later, αir will be
the area of the last Voronoi cell based on site ir. In general, for any fixed r, and assuming all the
weights aj �0 we have

αj = Ir−1,ir−1 � Ir,ir−1 � Ir,ir =αi

and so the scales αi are a monotonic function of the index r and the order in which lifting
determines the coefficients.

2.4. The dual basis functions
The lifting procedure can be thought of in two ways. On the one hand, if we have a function f
of the form (6), then expansion (8) gives an expression of f in terms of a multi-resolution basis,
where effects of different scales are captured by different wavelet coefficients. On the other hand,
consider lifting as a linear tranformation of a vector of values x, yielding a coefficient vector
x̃, say, whose elements have a multi-resolution interpretation. In either case the relationship
between the original function or data, and the derived coefficients, can be elucidated by inves-
tigating the dual basis functions or vectors. More can be found in Section 2.4 of Jansen et al.
(2008).

2.5. The variance of the sample coefficients
In this section, we set out an approach, which operates in O.Mn/ time and storage, for finding,
approximately, the variance of each wavelet and scaling coefficient as obtained by lifting. Of
course, because lifting operates linearly, for reasonably small data sets it is possible to calcu-
late the full covariance matrix of the coefficients by successively carrying out on the covariance
matrix the row and column operations corresponding to the lifting steps. This is a much more
burdensome calculation, requiring O.Mn/ vector operations on vectors of length n, but makes
it possible to evaluate the usefulness of the approximate method.

Suppose that the original data xk are independent random variables with variances Vk. Con-
sider a single lifting step of the form (4), writing xÅ for the values after the lifting has taken
place. Since xÅ

i =xi −Σj∈J ajxj, we have

var.xÅ
i /=Vi +

∑

j∈J

a2
jVj,

cov.xÅ
i , xj/=−ajVj:

.16/

Since xÅ
j =xj +xÅ

i bj, it follows that

var.xÅ
j /=Vj +b2

j var.xÅ
i /+2bj cov.xÅ

i , xj/= .1−2ajbj/ Vj +b2
j var.xÅ

i /: .17/

It follows that the effect of a single lifting step is to replace the variances by VÅ
k , where

VÅ
i =Vi +

∑

j∈J

a2
jVj,

VÅ
j = .1−2ajbj/Vj +b2

jVÅ
i for j ∈J:

.18/

The approximation that we use is to neglect any correlations between the coefficients that are
obtained at the next stage, but simply to iterate the calculations (18). This will yield an algorithm
essentially of the same complexity as the lifting algorithm itself, and indeed that can similarly
be carried out in place. Some experiments on lifting arrays obtained from Voronoi polygons, in
the way that is discussed later in the paper, demonstrate that only a little accuracy is lost, mostly
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in the large-scale wavelet coefficients and in the final scaling function coefficients, which tend
to have small variance anyway.

In some practical situations the assumption of independent xk-variables is not tenable. Such
a situation is beyond the scope of the present paper. However, we can envisage that prior or
estimated information on the covariance structure can be fed into the calculation of the coeffi-
cients’ variance along the lines of methods that are used for regular wavelet shrinkage such as
Kovac and Silverman (2000).

3. Lifting for graphs

We introduce a lifting scheme that essentially provides a kind of ‘wavelet transform on a net-
work’. Here we mean a ‘network’ to be a ‘function on a graph’. We consider our graphs to
have arisen in one of two ways. One way is that the graph is supplied to us predefined—e.g. a
transportation network or communications network. The other way is that data are supplied
in a form that can be converted into a network, e.g. irregularly spaced data in K -dimensional
space on which a graph can be induced by calculating interpoint distances and constructing,
say, an MST.

3.1. Minimal spanning trees and other tree-based approaches
For data sets in two dimensions, approaches that are based on Voronoi cells in Section 4 are
attractive, but in higher dimensions they become both computationally infeasible and philo-
sophically inappropriate. The number of Voronoi neighbours of each point will typically be
large and the computations will become burdensome.

Here, we consider an alternative lifting approach that is based on trees. In principle, any tree
can be used as the basis of our scheme. In the case of K -dimensional data, useful trees are
those that reflect the neighbourhood structure of the points. If the original data sites ti lie in a
K -dimensional Euclidean space, a natural approach is to use MSTs (see for example Krzanow-
ski and Marriott (1995)), which are easily computed. Other types of tree might be useful for
particular applications, and these would be a possible topic for future work.

Some data sets naturally live on a tree rather than in some Euclidean space. For example,
the data collection transects for the krill data that are depicted in Fig. 1 constitute a tree. More
generally, we can extend our ‘lifting on a tree’ to more general graphs as long as there is a
suitable neighbourhood structure. For example, in protein modelling, a tree could be defined
by the chemical bonds in a large molecule. In this case, wherever it is necessary to determine
distances between points, it may be appropriate to use distances in the original tree or graph.

For functions on a graph our methods provide a kind of ‘wavelet transform on a network’. By
restricting the analysis to a narrow range of scales our methodology provides a kind of ‘coarse
Fourier transform’ of a network function (similar to a single scale level of wavelet coefficients
acting as a band-pass filter). See Smola and Kondor (2003) and Belkin et al. (2004) for other
work on regularization of functions on graphs.

3.2. General aspects of tree-based lifting
The first step in the lifting scheme as set out in Section 2.3 was to specify the initial scaling
functions φnk and to find their integrals. In the tree context, we define the scaling function φni to
be 1 at the node i and 0 at all other nodes of the tree. At each stage of our process, we consider the
scaling functions and wavelets as being defined on the original nodes. We define a set of weights
wi and then define the ‘integral’ of any function having value fi at node i as the weighted sum
Σi wi f.i/. To relate the weights to the tree on which we are working, we define wi to be the sum
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of the lengths of the edges from the node i to its immediate neighbours. We arbitrarily use the
sum of the lengths but the average of the lengths is another possibility that we have used.

At each stage r, we calculate the wavelet coefficient corresponding to the node i with the
smallest current value of Iri. Letting J be the set of current neighbours of i, we must define a
suitable set of weights a. We may either let J be the immediate neighbours within the tree, or
we may include second- or even higher order neighbours in the set J.

Once the set J has been defined, we need to define the prediction weight vector a. For reasons
that are explained below, we mostly use inverse distance prediction weights, setting aij = cδ−1

ij ,
where δij is the distance from point i to point j, and c is chosen so that the weights sum to 1. In
the extreme case where J contains only one index j, the value at node j is used as the predictor
at node i.

Alternatively, in some circumstances, e.g. the krill data, the nodes do have bona fide Euclidean
co-ordinates, in which case the tree can be used to define the neighbours but the co-ordinates
are used by least squares to form prediction weights. To distinguish between these two variants
we refer to them either as a ‘tree with inverse distances weights’ or a ‘tree with least squares
co-ordinate weights’. As an example of these two algorithms in action see Fig. 2 in Section 6.3.

Having defined the weight vector a, we can update the integrals by using equation (12) and
calculate the update weights bj by using equation (15).

The final step is to update the neighbourhood structure. We shall assume that, as a point i is
eliminated from consideration, the spanning tree is modified locally, only changing the linkage
structure between points previously linked directly to i. If the point i to be removed has immedi-
ate neighbours j1, . . . , jm, say, then we replace the links between i and the jk by the links of the
MST of the points that are indexed by j1, . . . , jm. This procedure maintains the tree structure
of the pattern of links between points under current consideration.

How many orders of neighbours should be used in the prediction part of the lifting scheme?
‘Mixed scale’ points cause minor practical problems for our method based on Voronoi tessella-
tions, mostly near the boundaries. They are the source of the long and thin Delaunay triangles
that we discuss, with some solutions to the resulting problems, in Section 4.3.

On average, points in a tree have fewer neighbours than those from a Voronoi tessellation.
For example, compare the Voronoi mosaic for the krill data in Fig. 2 (right) in Jansen et al.
(2008) with the ship track in Fig. 2 (bottom left). This can be made precise: there are n − 1
edges in a tree constructed on n points so the average number of neighbours for a point in
a tree is 2.1 − 1=n/ irrespective of dimension or distribution of the points, or the method of
construction of the tree. For Voronoi tessellations the average number of neighbours is higher,
nearer 6 in two dimensions for moderate numbers of points (see Penrose (1996) and Penrose
and Yukich (2003)). In a tree, therefore, if only immediate neighbours are considered in the set
of neighbours J , there is less opportunity for ‘mixed scales’ to occur. Alternatively, we may wish
to include higher order neighbours in J , to obtain better predictions. If we used higher order
neighbours, we could either use neighbours up to a given order, or we could increase the order
of the neighbours until the size of J reached a certain size.

Finally, our algorithm is not just restricted to trees. The same steps can be followed for any
general graph where distances and integrals can be sensibly defined. For example, with the UK
rail network, see section 7.2 in Jansen et al. (2008).

3.3. Why use inverse distance prediction weights?
We now explore a correspondence between inverse distance prediction weights and local linear
prediction. Suppose that we are working on a tree, that we are predicting the value at point i
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and that J ={j1, j2, . . . , jr} for some r �2. Also, the tree is defined only by its linkage structure
and the lengths δij of its edges. We consider a particular Euclidean embedding of the tree near
the point i.

Define r unit vectors uj in .r −1/-space to be as far from one another on the unit sphere, so
that the end points of the uj form a line segment, equilateral triangle, regular tetrahedron or
higher dimensional regular simplex, in all cases centred at the origin. We then have Σj∈J uj =0.
Now place vertex i at the origin, and place vertex j at δijuj for j ∈ J . In the case where there
are two neighbours, this places i on a straight line between its two neighbours. More generally,
this corresponds to arranging the edges around vertex i to be as far as possible in different
directions.

Given values yj at vertex j for each j in J , define the linear function L.t/=a′t +b in .r −1/-
space to be the interpolant of the values yj at the points δijuj; the graph of this function will
be the unique hyperplane through the r points .δijuj, yj/ in r-space. Define yÅ to be the value
that is obtained by inverse distance weighting the values yj. We now have, setting c such that
cΣj δ

−1
ij =1,

yÅ = c
∑

j∈J

δ−1
ij yj = c

∑

j∈J

δ−1
ij L.δijuj/

= c
∑

j∈J

δ−1
ij .δija′uj +b/= ca′ ∑

j∈J

uj +b=b=L.0/:

It follows that, with this particular embedding of the tree in Euclidean space, the linear inter-
polant at the vertex i to the values yj at the vertices j is the inverse distance weighted average
yÅ.

4. Lifting based on Voronoi polygons

In this section we consider lifting for spatial irregular data based around Voronoi polygons and
Delaunay triangulations. The basic idea is to construct, at each stage, a triangulation of the data
sites. The neighbours of any site are then the sites that are joined to that site by edges within the
triangulation. Once a detail coefficient corresponding to a particular site has been found, the
triangulation is appropriately modified to remove that site.

4.1. Voronoi polygons, Delaunay triangulations and Dirichlet tessellations
Consider a set of sites in the plane. Let Ω be a suitable region in the plane containing all the sites
under consideration. The region Ω may, for example, be the whole plane, or a suitable rectangle
or the convex hull of the sites. Comments about the precise choice of Ω will be made later. The
Voronoi cell of any particular site is the set of points in Ω that are nearer to that site than to
any other. Because the boundaries of each cell are all perpendicular bisectors of lines joining
two sites, the Voronoi cells are polygons, and the Dirichlet tessellation is the partition of the Ω
into these polygons. See Fig. 2 of Jansen et al. (2008) for an example. Two sites are neighbours
if their Voronoi cells have a boundary in common, and the joins of all pairs of neighbours
form the Delaunay triangulation. There are algorithms for finding the Delaunay triangulation
in the first place, and for updating the triangulation when a site is removed. For further detailed
information see Okabe et al. (1992); for more information on these methods in statistics see
Herrmann et al. (1995) or Allard and Fraley (1997) for example.

At each lifting stage, the neighbours J of a site i under consideration are the neighbours
of i within the current Delaunay triangulation, and the values at these neighbours are used
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in the predict and update steps. More sophisticated methods could be based on higher order
neighbours.

The paradigm that was set out in Section 2.3 requires two more ingredients: the integrals of
the initial scaling functions φnk and a method of specifying the prediction weights ar at each
stage. Provided that Ω is a finite region, a natural definition of the initial scaling function φnk is
the indicator function of the Voronoi cell of the site tk, and so the integral of the scaling func-
tion is the area of this Voronoi cell. We consider two main methods of prediction: the natural
neighbour method as proposed by Sibson (1981) and local least squares.

4.2. Natural neighbour interpolation
If site i is removed and the Dirichlet tessellation recomputed, the Voronoi cell of that site will
be divided between its neighbours. Assume that the region Ω is finite. Let Ai be the cell corres-
ponding to site i and let Aij be the part of the cell that is made up of points whose next nearest
site, after i, is the site j. If site i is removed, then Aij will form part of the new cell of site j. If j
is not a neighbour of i then Aij will be empty.

Lifting using natural neighbour interpolation works by setting aj =|Aij|=|Ai| for each neigh-
bour j of i, where |·| denotes area. Provided that the cell Ai does not intersect the boundary of
Ω, the prediction weights that are thus obtained through natural neighbour interpolation will
predict a constant or linear function perfectly and have other attractive regularity, continuity
and stability properties. A corollary of the perfect prediction of linear functions is that, if a
function is linear, then its wavelet coefficients will be 0 except for possible boundary effects. If
the function is approximately linear in the region of the site ti and its neighbours {tj : j ∈ J},
then the linear prediction that is based on the neighbours will be quite good and so the wavelet
coefficient will be small. Another good property is that the scheme is interpolating; if the site ti

is very close to one of its neighbours tj then the prediction at site ti will be close to the value at
site tj and will tend to this value in the limit as site ti coincides with site tj.

One disadvantage of the natural neighbour method is its computational intensity, though the
method does remain linear in the number of sites.

4.3. Local least squares prediction
A computationally simpler approach to prediction uses local least squares. A least squares plane
is fitted to the values at the sites tj for j in J and is used to interpolate at the site ti. This scheme
has the property that, if the function f is linear over the site ti and its neighbours, then the
wavelet coefficient is 0. Therefore it shares some of the good properties of the natural neighbour
method.

There are, however, some numerical and conceptual issues with the local least squares method
which require careful attention. For example, unlike the natural neighbour method, the local
least squares method is not interpolating. The residuals from the least squares plane, through
the values at the sites with indices J , will not, in general, be 0. Therefore, even if the site ti

is very close to one of its neighbours, the predicted value will not necessarily be close to the
value at that neighbour, and more distant neighbours will still have a relatively heavy impact
on the prediction. This is in contrast with the natural neighbour method, where more distant
neighbours are automatically downweighted in the prediction, because they have small values
of |Aij|. In the local least squares approach it is desirable to avoid neighbour configurations
with a mixture of short and long edges, because these give rise to relationships between sites that
are a long way apart on the scale that is currently being considered. Because distant neighbours
will influence the prediction, for a smooth function the magnitude of a wavelet coefficient at
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a site will be affected by the distance to its furthest neighbour, and so the method may have
worse compression properties than the natural neighbour approach. Triangles which are far
from equilateral are likely to occur near the boundary, where two fairly distant sites may still
have Voronoi cells that touch one another, particularly if the boundary of Ω is a considerable
distance from the data boundary. This can be seen in the right-hand plot of Fig. 2 from Jansen
et al. (2008).

One way of dealing with this issue is to remove from the triangulation those narrow trian-
gles with two vertices on the boundary where the opposite angle is obtuse. This corresponds
to redefining Ω to be the convex hull of the sites under current consideration, so that sites will
only be considered to be neighbours if their Voronoi cells touch within the convex hull. A more
relaxed policy could allow obtuse triangles, but only up to 120◦, say. In any event, the approach
may need some modification at the corners of the configuration, where the approach that was
described may leave sites with a single neighbour, and in this case it may be appropriate to
reintroduce narrow triangles.

A related matter is the treatment of sites lying some distance from the remainder of the con-
figuration, so that the angle that is subtended by all the site’s neighbours is quite small. In this
case, prediction is more like extrapolation and can be quite unstable. A good, if fairly ad hoc,
way of dealing with this is to project both the site ti and the set of neighbours {tj : j ∈J} onto
the first principal component direction of the set {tj : j ∈J}. This is equivalent to using a least
squares fitting plane that is constrained to have gradient in this direction. Especially in this case,
the raw local linear least squares weights may fall outside the range [0, 1], though it will be only
in rather pathological cases that this will happen in the modified method. The natural neighbour
approach cannot suffer from this instability because its weights are necessarily in [0, 1].

4.4. Conclusions and further comparisons
Whichever method is used, it is necessary to retriangulate the configuration each time that a site
is removed. If the natural neighbour method is used, then the Dirichlet tessellation within the
region Ω will be needed for the next stage, though of course only the cells neighbouring the site
ir will have to be modified. It is conceivably possible to modify Ω at each stage but there is not
usually any particular point in doing so. Overall, the natural neighbour method is more stable
and more elegant, but at a considerable computational cost, which is usually not warranted.

5. Aspects of theory

Wavelet shrinkage is based on three properties of wavelet decompositions. The first is smooth-
ness of the wavelet basis, including numerical convergence of the refinement scheme. The second
is numerical stability and the third is sparsity of a wavelet decomposition. In classical dyadical
or translation invariant transforms, the analyses of the three properties largely coincide and
reduce to the solution of the two-scale equation

ϕ.x/=
∞∑

k=−∞
√

2hk ϕ.2x−k/:

If, for given scaling coefficients hk, the scaling function ϕ.x/ can be found by a numerically
converging iteration, then the framework of multi-resolution analysis guarantees stable decom-
positions and reconstructions (see for instance Mallat (1998), chapter VII). Sparsity is deter-
mined by the support of ϕ.x/ and by the linear approximation power of the scheme for smooth
functions. The approximation power depends on the maximum degree p of polynomials that
can be represented exactly by an expansion
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xp =
∞∑

k=−∞
ck ϕ.x−k/,

where p+1 is the number of dual vanishing moments of the wavelet transform. Numerical sta-
bility, on the other hand, is ensured by the concept of Riesz bases, which is encapsulated in the
definition of a multi-resolution analysis. A Riesz basis is ‘almost’ orthogonal in the sense that
the norm equivalence (known as Plancherel’s or Parseval’s equality) holds within finite bounds.
The norm equivalence is important in data processing, as it guarantees control on the effect of
processing coefficients after inverse transform: small operations on wavelet coefficients result in
small effects on the data.

Both stability and sparsity thus depend on the solution of the two-scale equation. In the
settings that are described in this paper, the two-scale equation itself is scale dependent: both
geometry and configurations are different in every step. As a consequence, the basis functions
are no longer dilations and translations of a single father scaling function and the convergence
analysis of the refinement process, leading to the basis functions, becomes difficult, if at all pos-
sible. One of the few exceptions is the convergence analysis of the cubic polynomial prediction
refinement of Daubechies et al. (2001), which is based on a commutation principle for divided
differences. The remainder of this section establishes results on sparsity and stability that do
not make use of the scaling function ϕ.x/.

5.1. Sparsity
The dual number of vanishing moments is controlled by the prediction step in the lifting. The
vanishing moments condition leads to perfect representations of polynomials. Smooth func-
tions that are well approximated by polynomials should also be well approximated in the
scaling bases, such that their wavelet coefficients are small and large coefficients correspond
to singularities only.

The approximation power of a wavelet decomposition for smooth functions is formalized by
the concept of Lipschitz regularity.

Definition 1. A function f.x/ is Lipschitz ν in a point x0 if and only if there is a polynomial
px0.x/ of degree r =	ν
− 1 and a finite number C such that |f.x/ − px0.x/|� C|x − x0|ν−r. A
function is uniformly Lipschitz ν on an interval I if it is Lipschitz ν in all points x ∈ I with
constant C independent of x.

It is well known (Jaffard, 1991) and straightforward to prove that the coefficients of a uni-
formly Lipschitz-ν-function f in an orthogonal or biorthogonal equidistant wavelet decompo-
sition with L2-normalized basis functions satisfy |wj,k|�2−j.ν+1=2/C. This result follows easily
from the expression wj,k =〈ψÅ

j,k, f 〉 withψÅ
j,k the L2-normalized dual wavelet function at scale j,

location k and 〈·, ·〉 the usual L2 inner product. Extension to two dimensions is straightforward.
Unless an explicit rescaling takes place, lifting works with unnormalized basis functions, i.e.,
applied to one-dimensional regularly spaced data, the primal wavelet basis functions would be
ψ.2jx−k/ and the corresponding duals are then 2jψÅ.2jx−k/, leading to coefficients satisfying
|wj,k|� 2−jνC. On irregular data points, in the absence of strong convergence results, similar
bounds on wavelet coefficients can be established, assuming a weak statement of convergence.
The following result is stated for lifting with linear least squares prediction or natural neighbour
interpolating prediction. Similar results hold for other schemes.

Proposition 1. Let xi =x.ti/ be n observations from a Lipschitz ν-function x : R2 →R. Con-
sider lifting with linear least squares prediction or natural neighbour interpolating prediction.
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Let Cr be the .n− r/×n matrix that maps the observed data vector onto the scaling coefficients
crk after r lifting steps. Let D be the matrix that maps the observed data vector onto the vector
of wavelet coefficients d. Assume that ‖Cr‖∞ is bounded for all r and for n → ∞. Then, for
some constant C, independent from n and r, |dir |�Chν

Å

ir
, with νÅ = min.ν, 2/ and where hir =

max{‖tp − tq‖, p, q∈Iir} with Iir ={p∈{1, . . . , n}, Dir ,p �=0}, i.e. the scale hr of coefficient dir is
the maximum distance between points tp with a non-zero contribution in the calculation of dir .

Proof. We assume here that 1 <ν�2. The proof can be repeated with slight modifications if
ν�1 or ν>2. Define x̃.t/=x.tir /+∇x.tir /

′.t− tir /. It can be verified that ".t/= x̃.t/−x.t/ satis-
fies |".t/|�C‖t − tir‖ν . Both local least squares prediction and natural neighbour interpolation
schemes have the linear reproducing property (this is the local co-ordinate property of Sibson
(1980) in the case of natural interpolation). As a consequence, when the wavelet transform is
applied to x̃.t/, then all intermediate detail coefficients are 0, i.e. d̃ir =0, thereby annihilating a
priori all update step effects. Thus, the scaling coefficients of x̃.t/ satisfy c̃rj = x̃j. The wavelet
analysis is said to have two dual vanishing moments.

Denote by d"
ir

the wavelet coefficients of ".t/; then |dir |=|d̃ir +d"
ir
|=|d"

ir
|�‖Cr−1‖∞ ·‖ar‖1hνir .

If ‖Cr‖∞ is bounded, then ‖Cr−1‖∞·‖ar‖1 can be bounded by a constant C.

Remark 1. The assumption that ‖Cr‖∞ is bounded can be seen as a partial stability condition.
It depends on the choice of update steps and on the homogeneity of the data points t. Scat-
tered data that are distributed in an inhomogeneous way may cause large coefficients. A formal
definition of homogeneity is given in Section 5.2.

Remark 2. Checking that ‖Cr‖∞ is bounded may proceed through the adjoint lifting transform
(Jansen, 2007). The adjoint transform for lifting in equation (4) is an update-first scheme and
reads as

update, xJ :=xJ +axi, and then predict, xi :=xi −b′xJ :

The adjoint transform switches the roles of primal and dual basis functions, by using the predic-
tion coefficients in an update step and vice versa. The inverse adjoint transform starting from
dir =0 and crl =0, except for one index l=k, reveals the kth row of Cr.

On the basis of this result for smooth functions, we can construct a space of ‘nearly’ smooth
functions, in a similar way as Besov or Triebel spaces. The smoothness space is defined in
terms of the second-generation wavelet coefficients. Large coefficients are allowed, if they do
not dominate the global decay, i.e. we define the second-generation Besov sequence norm as

‖f.t/‖bνp,p
=

n∑

r=1
h

−νp
ir

|dir |p‖ψir‖p
Lp

: .19/

This can further be extended to a three-parameter norm ‖f.t/‖bνp,q
, with p �=q. The parameter

p measures the sparsity within scale whereas the parameter q controls the decay rate across
scales. This definition of Besov sequence spaces corresponds to a discretization from a contin-
uous timescale analysis (Donoho et al., 1998). As the second-generation wavelet transform is
no longer a discretization of a continuous wavelet transform, there are several possible ways for
further extension of the definition of Besov spaces to the case where p �=q.

5.2. Stability
For proper processing, the set of wavelet functions should constitute a Riesz basis or stable basis
in the infinitely dimensional space L2.R2/. A Riesz basis is a basis that is almost orthogonal, in
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the sense that the angles between any two vectors that are spanned by disjoint subsets of the set
of basis functions are bounded from below. The formal definition is as follows.

Definition 2.Let {φj, j =1, . . . , ∞} be a Schauder basis of the Hilbert space H; then this is a
Riesz basis if

(a) it is almost normalized, i.e. there are positive constants a and A so that a � ‖φj‖2
H �

A, ∀j ∈N, and
(b) it is unconditional, i.e. there are positive constants c and C, so that, if f =Σ∞

j=1wjφj, then
c‖w‖2

2 �‖f‖2
H �C‖w‖2

2.

The Riesz basis condition is difficult to check in the context of irregularly spaced data, since it
depends on the subdivision of the irregular locations up to infinitely fine grids.

A necessary condition is that the multiscale grid is not arbitrarily inhomogeneous. Homo-
geneity in two dimensions is defined by the minimum angle in a triangulation. Let θΔj be the
minimum angle in the triangulation at scale j; then we assume that, for all j =1, . . . , n and for
n→∞, θΔj >θÅΔ, for some positive number θÅΔ.

A necessary, but far from sufficient (Jansen and Oonincx (2005), pages 88–89) condition
for Riesz stability is that the one-level transforms (4) are uniformly bounded and boundedly
invertible. We have the following result.

Proposition 2. Given a homogeneity constant θÅΔ, the one-level transforms of a lifting trans-
form with local least squares prediction, inverse distance prediction or natural neighbour inter-
polation and with minimum norm update are uniformly bounded and boundedly invertible
in j.

Proof. Thanks to the specific structure of lifting and its immediate invertibility property, it
is sufficient that prediction and update vectors a and b are uniformly bounded. The number of
non-zero entries in these vectors is bounded by 2π=θÅΔ. Any norm of the vectors is bounded if all
non-zero entries are bounded. The prediction coefficients a lie between 0 and 1 for the inverse
distance prediction and for the natural neighbour prediction. It can be elaborated that they are
bounded for the least squares prediction, thanks to the lower bound on θΔj .

For the update coefficients, we have the following result.

Lemma 1. If all 0 � ar
j � 1 and if ir is the value of k that minimizes Irk, then the update

coefficients br
j, as defined in equation (15), satisfy 0 � br

j � 1
2 . Similar bounds exist if ar

j are
bounded by values different from 0 and 1.

Proof. br
j = Irir Ir−1,j=Σk∈Jr I

2
r−1,k with Ir−1,j = Irj +ar

jIrir . Clearly, br
j > 0, and

‖br‖∞ = Irir

max
k∈Jr

.Ir−1,k/

∑

k∈Jr

I2
r−1,k

=
max
k∈Jr

.Irj=Irir +ar
j/

∑

k∈Jr

.Irj=Irir +ar
j/2 :

Note that linear reproduction (two vanishing moments) implies that Σj∈Jr ar
j =1. For nr =1, we

have a1
j =1 and thus

b1
r = 1

Ir1=Irir +1
� 1

2
:

For nr > 1, setting u = maxk∈Jr .Irj=Irir + ar
j/, ‖br‖∞ takes the shape of f.u/ = u=.u2 + R2/ for

u> 1 and with R> 1. It is straightforward to verify that f.u/� 1
2 .



114 M. Jansen, G. P. Nason and B. W. Silverman

5.3. Compression
Wavelet shrinkage relies on the ability of the underlying representation to compress functions
into sparse representations. Section 5 of Jansen et al. (2008) exhibits simulations that show that
our lifting methods (especially Voronoi) have compression abilities roughly in line with regular
wavelets.

6. Bayesian shrinkage

Now consider the following model of observations subject to noise: Zi = f.ti/ + "i, where the
noise "i is independent N.0,σ2

i / random variables. The grid locations are irregular but consid-
ered fixed for the purposes of the analysis. Wavelet-based smoothing algorithms estimate f by
taking an appropriate wavelet transform, modifying the coefficients to reduce noise and finally
inverse transforming the updated coefficients. Because of the notion that the wavelet transform
of the unknown function is likely to be in some sense ‘economical’, some form of thresholding
or shrinkage procedure is used to process the observed coefficients. Soft and hard thresholding
are the best-known thresholding methods, but more sophisticated shrinking may follow (among
others) from a Bayesian analysis of the noisy coefficients.

6.1. Prior model and posterior density
The essence of the thresholding problem is the following. Suppose that we have a parameter θ
and an observation Z∼N.θ, 1/. In the wavelet smoothing case, θ would be an individual coeffi-
cient rescaled so that the empirical coefficient had unit variance. Following references such as
Clyde et al. (1998), Abramovich et al. (1998) and Johnstone and Silverman (2004) the assump-
tion that θ is a coefficient from an economical expansion is modelled by using a mixture prior
for θ of the form

θ∼ .1−π/δ0 +πγ .20/

where γ is a symmetric density.
Johnstone and Silverman (2004) explored the advantages of using a heavy-tailed density for

γ, such as the density

γ.u/= .2π/−1=2{1−|u|Φ̃.|u|/=φ.u/} .21/

where Φ̃.u/ is the upper tail probability of the standard normal distribution. This density has
tails that decay as u−2, which is the same weight as those of the Cauchy distribution. For this
reason we refer to density (21) as the quasi-Cauchy density.

Suppose that θ∼ .1 − π/δ0 + πγ and Z ∼ N.θ, 1/. Johnstone and Silverman (2004) set out
details of the calculation of the posterior density f.θ|Z/ and also of the marginal density f.Z/=∫ {.1−π/ δ0.u/+π γ.u/} φ.z−u/ du.

6.2. Bayesian decision rule: posterior median
Once we have the expression for the posterior density fθ|Z, we have various choices of point
estimates of θ. The posterior mean is popular, but it lacks the thresholding property. Unless
Z = 0 the estimate will be non-zero, which does not accord with the notion that the coeffi-
cient may be 0. An alternative is the posterior median θ̃.z/, satisfying F̃ θ|Z=z.θ̃/ = 0:5. With
the quasi-Cauchy distribution for γ, this leads to a tractable expression for θ̃.z/ in terms of the
standard normal distribution and its inverse. See Johnstone and Silverman (2005a) for details
and implementation.



Multiscale Methods for Data 115

The posterior median rule is a strict thresholding rule, with the property that, for any given
π, there is a threshold τ .π/ such that θ̃.z/=0 if and only if |z|� τ .π/. An alternative to the use
of the full posterior median is to use hard or soft thresholding with threshold τ .π/. The smaller
the probability π the larger the threshold τ .π/, and the choice of prior probability π that θ �=0
corresponds to the choice of threshold. It is this choice that we consider next.

6.3. Estimating the parameters (maximum likelihood estimation)
Suppose that we have a sequence θi of coefficients and a sequence of observations Zi ∼N.θi, 1/,
for i = 1, 2, . . . , n. Suppose, initially, that the θi have independent prior distributions (20) all
with the same value of π, and that the observations Zi are themselves independent conditional
on the θi. Let g be the convolution of γ with the standard normal density, so that the mar-
ginal density of the Zi is .1−π/ φ.z/+π g.z/. Johnstone and Silverman (2004, 2005b) explored
attractive features of a marginal maximum likelihood (ML) approach to the choice of π, cho-
sen to maximize the log-likelihood l.π/ =Σi log{.1 −π/ φ.zi/ +π g.zi/}. This procedure is an
empirical Bayes approach. First of all, the whole data set is used to estimate the parameter π.
The estimated value is then used as a prior probability in model (20) and the inference is carried
out for each coefficient separately. For theoretical and practical reasons, the maximization is
usually carried out over a range of π bounded below at a point corresponding to the threshold
taking the ‘universal threshold’ value

√{2 log.n/}.
In the case of a classical orthogonal wavelet estimate, the coefficients are arranged into levels,

and it is appropriate for the probability π to be constant within levels but to be allowed to
vary between levels. For this, each level of the transform is treated separately by the marginal
ML method, and an estimated parameter πj is obtained for each level j. Typically, the param-
eter decreases as the resolution increases. At the levels corresponding to fine scale effects, the
prior probability πj is small and an observed coefficient must pass a high threshold in order
not to yield an estimate of 0. At the coarser scale levels, a smaller threshold will usually be
appropriate.

In the lifting case, the division into ‘dyadic’ levels is no longer appropriate, and instead some
other possible approaches can be pursued. Overall, it can be assumed that the prior that is used
for coefficient θi has probability πi of being non-zero. The criterion for choosing the πi is still
the maximization of the marginal log-likelihood l.π1, . . . ,πn/=Σi log{.1−πi/ φ.zi/+πi g.zi/},
but subject to appropriate constraints on the parameters πi. Some possibilities are as follows.

(a) Parametric dependence: the coefficients are constrained to belong to a particular low
dimensional parametric family. For example, for lifting we might constrain πi to be pro-
portional to the scale αi, or perhaps to some power αλi . This accords with the notion
that there are singularities of some sort in the underlying function. If the singularities are
points, αi is proportional to the probability that the wavelet will encounter one of these
singularities. For line singularities a more appropriate model for this probability is α1=2

i ,
and so on for spaces of singularities of different fractal dimension.

(b) Artificial levels: this approach is an adaptation of the dyadic structure of the standard
discrete wavelet transform. One splits up the coefficients into levels in some arbitrary
way, and one possibility is simply to impose an artificial dyadic split, with the highest
level containing the half of the coefficients with finest scale, and subsequently lower levels
successively a quarter, an eighth, and so on, of the total number of coefficients in the
order that is defined by the lifting scheme. An alternative is to group the coefficients by
taking account of the values of their pseudoscales. For example, if α0 is the median scale
of the coefficients, then levels could be defined with coefficients with scales in ranges
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.2jα0, 2j−1α0] for j � 1, with the highest level consisting of all those coefficients with
scales up to and including α0.

(c) Parametric dependence within artificial levels: the simplest approach using artificial levels is
to constrain πi to be constant within levels. An alternative is to allow a parametric depen-
dence, e.g. πi proportional to α1=2

i , with a constant of proportionality that is allowed to
depend on the level. Finally, whatever method is chosen, it may be appropriate to smooth
or to interpolate the estimated πi.

(d) Monotone dependence: conceptually the simplest constraint on the πi would be to require
only that πi increases as the individual scale αi increases. Because of the convexity prop-
erties of the log-likelihood function, estimation of πi subject to this constraint can be
carried out by using an iteratively reweighted least squares isotone regression algorithm.
Part of the standard theory of least squares isotone regression is a convexity argument
showing that the least squares isotone regression function is piecewise constant. The same
argument shows that the resulting estimated πi are also piecewise constant functions of
the scales αi, and so this method indirectly splits the coefficients into levels, with constant
πi within each level. Further details are available from Johnstone and Silverman (2005b).
See Fig. 2(d) for an example of using such an algorithm.

The calculations for maximizing the log-likelihood are easily set out. Define

β.w/={g.w/−φ.w/}=φ.w/=w−2{exp.w2=2/−1}−1:

Then, by simple calculus, we have @l=@πi =β.zi/{1+πi β.zi/}−1, which is a decreasing function
of πi. Obviously, we always constrain πi � 1. In addition, to avoid excessively high thresholds,
and in line with the theory that was developed in Johnstone and Silverman (2004), we impose
a lower limit on πi corresponding approximately to a threshold value equal to the universal
threshold

√{2 log.n/}. For simplicity, we choose the lower limit πlo to satisfy the condition
P [θi =0|zi =√{2 log.n/}]= 1

2 , which is equivalent to setting π−1
lo =1+ .n−1/=2 log.n/.

Details of the algorithms that were used to make the constrained ML choice of the πi for the
parametric and monotone dependence cases are set out in Johnstone and Silverman (2005a).

6.4. Parametric dependence within artificial levels
Details of the parametric dependence algorithm can be found in Johnstone and Silverman
(2005a). We consider the modifications that are necessary to adapt the procedure to the artifi-
cial levels case for lifting.

6.4.1. General set-up
Suppose that we have data zi for i=1, . . . , n, and consider the basic model πi = ciζ where ci are
known constants. To enforce the constraints πlo �πi �1 we refine this to

πi.ζ/=median{πlo, ciζ, 1}: .22/

Letting g be the convolution of γ with φ, the marginal log-likelihood function is then given
by

l.ζ/=∑

i

log[{1−πi.ζ/} φ.zi/+πi.ζ/ g.zi/]: .23/

By the definition of πi there is no loss of generality in considering ζ only over the interval
[ζlo, ζhi], say, where ζlo =πlo max.ci/

−1, and ζhi =min.ci/
−1. If ζ<ζlo then all πi will be πlo and

if ζ> ζhi then all πi will be 1, regardless of how far outside the interval ζ lies.
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Fig. 2. Analyses of a selected portion of the krill data set (the radius of the circles, except in (c), encodes
the square root of the krill density estimate in grams per square metre; the largest value is 14981 g m�2):
(a) krill density supplied by the British Antarctic Survey; (b) MST lifted estimate with least squares co-ordinate
weights and eBayesThresh applied to lifting coefficients at all scales; (c) krill sample locations (�) and tree
determined by the ship transect ( ); (d) ship-determined transect tree-lifted estimate by using inverse
distance weights and eBayesThresh with monotone dependence of πi

6.4.2. For artifical levels
All the artificial levels cases reduce to the same general form. Within a particular level L, we
have equation (22), where ci are known constants such as 1 or α1=2

i , and ζ is a parameter to be
estimated. The likelihood lL for the level L is now equation (23) but where the sum is now over
i∈L. In the straightforward artificial levels case, all the ci = 1, and lL is a concave function of
ζ in [πlo, 1]. We have l′L.ζ/=Σi∈Lβ.zi/={1 + ζ β.zi/}, a decreasing function of ζ. By checking
the signs of l′L.ζ/ at the ends of the range it can be discovered whether lL.ζ/ has its maximum
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at one end or the other; if not, a binary search on the decreasing function l′L.ζ/ will find the
ML estimate. If the ci are not all the same, then we apply the ‘parametric dependence’ approach
within each artificial level as described in Johnstone and Silverman (2005a).

7. Examples and comparisons

7.1. Multiscale lifting for krill data
7.1.1. Background
Goss and Everson (1996) reported that as a by-product of a fish stock assessment study an
opportunity was taken to estimate the biomass of Antarctic krill on the South Georgia shelf by
the British Antarctic Survey. Goss and Everson (1996) stated that krill biomass determination is
important because they are a basic part of the ‘food web’. Krill are consumed by large numbers
of birds, mammals and fish but are also increasingly being harvested for both human and animal
consumption. As well as potential overfishing krill stocks are also under pressure from a variety
of other sources such as sea temperature rise or increased ultraviolet penetration of seawater.

Since the study was a by-product of another study the sampling points took little account of
the expected distribution of krill. Indeed, stations were selected for the fish abundance study
and the shortest overall track was selected that visited all the sampling stations. Fig. 1 shows
a selection from the transects and the sampled krill values along it. Fig. 2 shows a different
portion of the krill data subjected to regression analyses using lifting with trees by using both
least squares co-ordinate and inverse distance weights. Fig. 3 shows estimates that were obtained
using Voronoi lifting.

7.1.2. Fitting
For all the regression estimates a small proportion of small negative values were replaced by 0.
In all estimates many of the original zero data values have been replaced by very small inten-
sity values. In Fig. 2 it is interesting to note the differences between the two estimates around
the [175 km, 262 km] location. The estimate that is based on the MST estimates some ‘lumps’
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Fig. 3. Krill density estimates computed by using Voronoi least squares lifting with regular eBayesThresh:
(a) estimate on the raw data; (b) estimate on log-transformed data
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of intensity, whereas the estimate that is based on the ship’s track estimates small intensities
following the ship’s path. There are at least two reasons for these differences:

(a) the ship’s track only uses neighbours from the previous and next sample in the track
whereas the MST algorithm will use nearest neighbours irrespectively of the track;

(b) the total time that the ship takes to cover points in the region (within a 25 km2 box centred
on [175 km, 262 km]) is approximately 12 h and the ship crosses near to the centre about
five times and the actual krill density over this time may change.

With regard to the second point if the density field of a system is subject to rapid change then
maybe the estimate that follows the ship’s track would be more reliable. Otherwise, if the field is
slowly changing then estimates that take more account of geographical spread, like the MST,
or even Voronoi estimation might be more appropriate.

7.1.3. Model verification
Let us take the MST lifted by using least squares co-ordinate weights analysis further. The
estimate from this procedure is shown in Fig. 2(b). We examined the residuals from the fit and
discovered that the residuals were approximately normally distributed (both by inspecting a
histogram and through a Kolmogorov–Smirnov test p-value of 0.18) with a standard deviation
of about 11.4. The variance of the residuals appears remarkably constant over the plane. All of
this indicates a very good fit to model (1).

7.1.4. Comparisons
Our results directly contrast with those generated by LOESS and the MATLAB ‘triogram’
function. Neither of these methods dealt with the ‘clumpiness’ of the krill data at all well. Both
methods smoothed out some features and missed others completely. Hence, their residuals
also did not look satisfactory either. These results concur with our simulations in Section 7.2
below.

7.1.5. Physical interpretation
The likelihood maximization that was described in Section 6.3 results in piecewise constant
thresholds (over scale), which are derived from the piecewise constant weight estimates πi aris-
ing from the monotone dependence constraints. The thresholds are plotted in Fig. 5 of Jansen
et al. (2008). The piecewise constant functions implicitly divide the scale space into a number of
data-defined resolution levels. (For those who are familiar with regular wavelet methods, this is an
example of level-dependent thresholding but where the resolution levels are not fixed dyadic but
arise from, and depend on, the data.) The smallest threshold value is approximately 4:6×10−9

for the coarsest 345 coefficients. This means that wavelet coefficients that are in scale ranges from
0.8 km and up are essentially not thresholded. Another way of interpreting this, which is familiar
to wavelet shrinkage researchers, is to say that 0.8 km is the ‘primary resolution’. Finer scales
than this receive monotonically higher thresholds in bands [0:71, 0:8/, [0:58, 0:71/, [0:09, 0:58/

and less than 0.09. The thresholds statistically indicate that there is little or no variation in the
‘true’ intensity pattern at less than 100 m and there is reduced variation at less than 600 m. This
information could be then cross-referenced with individual clusters of wavelet coefficients to
provide estimated information about particular cluster groupings and locations. In summary,
we obtain information in terms of the estimate but also information on the variation of the ‘true’
intensity via the thresholds.
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Finally, the krill data distribution does not look particularly Gaussian. Fig. 3 shows two more
estimates by using Voronoi-based lifting with and without the log-transformation. In future the
Haar–Fisz transform (see Fryzlewicz and Nason (2004) or Jansen (2006)) might be used.

Section 7.2 in Jansen et al. (2008) describes another example that is concerned with shrinkage
of delays on part of the UK rail network via tree-based lifting.

7.2. Comparisons
7.2.1. Comparing our lifting methods with themselves and LOESS
We carried out a large simulation study with our new methods and compared them with LOESS
by using R (see Cleveland and Devlin (1988) for more information on LOESS; see R Develop-
ment Core Team (2008) for R). We evaluated these methods on two-dimensional analogues of
the Blocks, Bumps, Heavisine and Doppler test functions that were introduced by Donoho and
Johnstone (1994) and the piecewise linear function mfc. Pictures of the test functions appear in
Fig. 4. Full mathematical definitions of these functions along with comprehensive simulation
results appear in Nason et al. (2004).

Every simulation run was based on estimating one of the test functions on a jittered 16×16
grid and adding independent and identically distributed Gaussian noise, varying amounts of
jitter (distributed as Unif[−η, η] for η=0:1, 0:01, 0:001, and varying signal-to-noise ratios. Sen-
sitivity to ‘primary resolution’ (the number of points that are removed in the lifting transform)
was also explored. We also explored the performance of our different ways of carrying out our
ML estimation as described in Section 6.3.

(b) (c) (d) (e)(a)

Fig. 4. Two-dimensional analogues of Donoho and Johnstone (1994) test functions: (a) Doppler; (b) Heav-
isine; (c) Blocks; (d) Bumps; (e) mfc (not an analogue)

Table 1. Medians (and median absolute deviations in
parentheses) of 100 simulated sums-of-squares error val-
ues for LOESS, tree-based lifting using co-ordinate infor-
mation and Voronoi-based lifting†

Signal Results for the following procedures:

LOESS Tree Voronoi

mfc 18 (1.6) 75 (46) 26 (4)
Doppler 130 (5.9) 35 (26) 8 (1.0)
Heavisine 530 (49) 410 (200) 72 (20)
Blocks 2300 (53) 190 (91) 160 (37)
Bumps 3000 (160) 770 (500) 210 (32)

†Jitter η= 0:01; signal-to-noise ratio 5; ng = 162; monotone
dependence EBayesThresh (×1000).
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Table 1 shows a selection of results from Nason et al. (2004). We can see that for the very
simple piecewise linear function mfc the LOESS procedure does very well, but the Voronoi
lifting is not far behind. For all other signals the lifting procedures do better or much better.
However, note that the performance for the tree-based lifting is highly variable (large median
absolute deviation values); this is because of the fewer neighbours that it uses in constructing
neighbours. The excellent performance of the Voronoi-based lifting is seen throughout all sim-
ulations. Primary resolution does not appear to influence performance dramatically but small
differences appear, especially with the tree-based lifting. Likewise, among all the methods for
carrying out ML estimation (all coefficients, parametric dependence, artificial levels, paramet-
ric dependence within artificial levels and monotone dependence) there seems to be no clear
winner. Each method seemed to do better than the others on occasion. If forced to select one
method then monotone dependence usually seemed to do well.

7.2.2. Comparing Voronoi lifting with triograms
Hansen et al. (1998) introduced the triogram method for function estimation using piecewise
linear bivariate splines based on an adaptively constructed triangulation (see also Koenker and
Mizera (2004) for a smoothing spline approach to triograms based on the Delaunay triangula-
tion). We compare our Voronoi lifting method with triograms by using the quantreg package.

We used two test functions for this simulation study. First define the generic function

gf.x, y, horizon/= .2x+y/ I{horizon.x, y/�0}+ .10−x/ I{horizon.x, y/> 0}, .24/

where I is the usual indicator function and then define horizons

horizonA.x, y/=3x−y −1,

horizonB.x, y/= .x− 1
2 /2 + .y − 1

2 /2 −1=16,
.25/

and then our test functions are mfa.x, y/= gf{x, y, horizonA.x, y/} and mfb.x, y/ by replacing
horizonA by horizonB.

For each simulation in this section we generated 1000 .x, y/ locations from a two-dimensional
uniform density on [0, 1]× [0, 1]. We then generated noisy observations by adding Gaussian noise
with two signal-to-noise ratios of 18 dB and 15 dB. In each case we performed 50 simulations.
The results are shown in Table 2 and indicate the superior performance of the Voronoi lifting
method for these functions and signal-to-noise ratios. Further experiments show that for very
low signal-to-noise ratios triogram methods do better.

7.2.3. Comparing Voronoi lifting with thin plate splines and kriging
Heaton and Silverman (2008) compared our Voronoi lifting methodology, additionally equipped

Table 2. Mean averaged squared errors from 50 simulations for denoising
of functions mfa and mfb by triogram and Voronoi lifting methods

Method Results for the following functions and levels of noise:

mfa, 15 dB mfa, 18 dB mfb, 15 dB mfb, 18 dB

Triograms 20.9 (0.04) 20.0 (0.04) 19.9 (0.04) 19.3 (0.04)
Voronoi 16.4 (0.02) 11.1 (0.02) 14.3 (0.03) 9.7 (0.02)
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with an imputation method with both thin plate spline and kriging methodology, and showed
that Voronoi lifting is competitive; see Section 8 for further information.

8. Conclusions and future possibilities

This paper has described a variation on the lifting theme: ‘lifting one coefficient at a time’ and
specified a new multiscale methodology for non-parametric regression in two or more dimen-
sions. Three types of lifting methodology are developed: lifting with the Dirichlet tessellation
using co-ordinate information in two dimensions, lifting with trees and graphs using co-ordinate
information and lifting with graphs using interpoint distance information. With these algo-
rithms ‘scale’ naturally arises as a continuous concept and various empirical Bayes methods
have been invented that make use of the continuous scale knowledge in a consistent way. Some
theoretical aspects have been discussed. We have also demonstrated the utility of our techniques
both on the krill data (where ships’ track information can optionally be used) and simulated
data.

A further innovation would be to choose from among different types of predict and/or
update steps as each coefficient is generated. In generic lifting this is known as ‘adaptive lifting’
(see Claypoole et al. (2003)). For lifting one coefficient at a time adaptive lifting has been
described in one dimension by Nunes et al. (2006) who built on Jansen et al. (2001) and pre-
print versions of this paper by permitting a choice of regression order (linear, quadratic or
cubic) and/or number of neighbours that are involved in prediction. Nunes et al. (2006) pro-
vided a full literature review of adaptive lifting and a comprehensive simulation study, which
shows that one-dimensional adaptive lifting one coefficient at a time produces extremely good
compression and non-parametric regression results when compared with locfit (Loader, 1997,
1999), the smooth.spline() function in R and the irregular wavelet shrinkage algorithm
by Kovac and Silverman (2000). Our methods can be developed further to cope with hetero-
scedastic variance by using ideas that are similar to those proposed by Kovac and Silverman
(2000) as demonstrated in one dimension by Nunes et al. (2006). The techniques of Kovac
and Silverman (2000) could also be used to cope with correlated errors: essentially an estimate
of the correlation structure would be fed into the variance estimation stage as described in
Section 2.5.

As well as estimating true values from a noisy function (either irregularly spaced or on a
network) on a given set of points we might also wish to estimate the function at a new set of
points. Heaton and Silverman (2008) described a method that imputes the value of the function
at a set of sites given information from another set of sites by using the Bayesian lifting model
that we present above using the Gibbs sampler. They demonstrated their method successfully
both with regular wavelet shrinkage and also on simulated and real data using our two-dimen-
sional Voronoi lifting. For both simulated and real data their results are competitve with both
kriging and thin plate spline methods and in one of the three cases for the rainfall data the
lifting imputation method is significantly better. More detailed simulations and comparisons
need to be performed to explore thoroughly the utility of these methods. Other questions along
these lines remain—e.g. how to deal with locations that disappear when we are modelling data
structures through time.

Another important possibility would be to model more accurately the variance and cor-
relation between lifting coefficients, ideally in a computationally efficient way. Such a possi-
bility could be incorporated in the empirical Bayes paradigm, but issues of computational
efficiency would have to be dealt with. This leads on to the possibility of defining stochas-
tic processes on the lifting coefficients themselves and, additionally, defining a process for
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the locations ti. For example, one might envisage developing a similar kind of model to
locally stationary wavelet processes as introduced by Nason et al. (2000) by using our lifting
techniques.
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