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We propose a new method for performing multiscale analysis of functions defined 
on the vertices of a finite connected weighted graph. Our approach relies on a 
random spanning forest to downsample the set of vertices, and on approximate 
solutions of Markov intertwining relation to provide a subgraph structure and a 
filter bank leading to a wavelet basis of the set of functions. Our construction 
involves two parameters q and q′. The first one controls the mean number of 
kept vertices in the downsampling, while the second one is a tuning parameter 
between space localization and frequency localization. We provide an explicit 
reconstruction formula, bounds on the reconstruction operator norm and on the 
error in the intertwining relation, and a Jackson-like inequality. These bounds lead 
to recommend a way to choose the parameters q and q′. We illustrate the method 
by numerical experiments.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Graphs provide a flexible representation of geometric structures of irregular domains, and they are now 
a commonly used tool in numerous applications including neurosciences, social sciences, biology, transport, 
communications, etc. One edge between two vertices models an interaction between them, and one can also 
associate a weight to each edge to quantify levels of interaction, leading to a weighted graph. A graph signal 
associates data to each vertex of the graph. As a measure of the brain activity in distinct functional regions, 
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functional magnetic resonance images are an instance of a such a graph signal. Therefore, signal processing 
on weighted graphs has raised significant interest in recent years (see [21] for a review on the subject). This 
paper is concerned with the problem of defining a multiresolution analysis for graph signals. To introduce 
the problem, let us recall the now classical method to perform such a multiresolution analysis on a regular 
domain.

1.1. Multiresolution analysis on regular grids

Let us consider a discrete periodic function f : Zn = Z/nZ → R, viewed as a vector in Rn. The multires-
olution analysis of f is based on wavelet analysis and the so-called multiresolution scheme. Performing the 
wavelet analysis amounts to compute an “approximation” f1 ∈ Rn/2 and a “detail” component g1 ∈ Rn/2

through classical operations in signal processing such as “filtering” and “downsampling”. Roughly speaking 
one wishes the approximation to give the main trends present in f whereas the detail would contain more 
refined information. This is done by splitting the frequency content of f into two components: f1 focuses on 
the low frequency part of f whereas the high frequencies in f are contained in g1. In signal processing and 
image processing, “filtering” (i.e. computing the convolution f � k for some well chosen kernel k) allows to 
perform such frequency splittings. In our case Kl(f) = f �kl yields Kl(f) as a low frequency component of f
and Kh(f) = f �kh yields Kh(f) as a high frequency version of f . The vectors f1 and g1 are “downsampled” 
versions of Kl(f) and Kh(f) by a factor of 2, which means that one keeps one coordinate of Kl(f) and 
Kh(f) out of two, to build f1 and g1 respectively. Thus the total length of the concatenation of the two 
vectors [f1, g1] is exactly n, the length of f . To sum up we have

f1(x) = Kl(f)(x) = 〈ϕx, f〉

g1(x) = Kh(f)(x) = 〈ψx, f〉

where

• x belongs to the set of downsamples Zn isomorphic to Z/n
2Z.

• {ϕx, x ∈ Zn} is the set of functions such that the equality between linear forms 〈ϕx, ·〉 = Kl(·)(x) holds 
for all x ∈ Zn.

• In the same way {ψx, x ∈ Zn} is such that 〈ψx, ·〉 = Kh(·)(x) holds for all x ∈ Zn.

The choice of kl and kh is clearly crucial and is done in such a way that perfect reconstruction of f is 
possible from f1 and g1, so that there is no lost information in the representation [f1, g1]. One can iterate 
the scheme to produce a sequence fN0 ∈ Rn/2N0

, gN0 ∈ Rn/2N0
, ..., g1 ∈ Rn/2 such that the total length of the 

concatenated vectors [fN0 , gN0 , ..., g1] is exactly n. This is the reason why this scheme yields a multiresolution 
representation of f . Remark that the perfect reconstruction condition amounts to have B = {ϕx, ψx, x ∈ Zn}
a basis for the signals f on Zn. A famous construction by Ingrid Daubechies [6] derives several families of 
orthonormal compactly supported such basis B. These families combine localization in space around the 
point x and localization properties in frequency due to the filtering step they have been built from. Using 
this space-frequency localization one can derive key properties of the wavelet analysis of a signal which 
rely on the deep links between the local regularity properties of f and the behavior and decay properties of 
detail coefficients. Let us finish by saying that wavelet type algorithms led to developments of many powerful 
algorithms of compression, signal restauration, classification, and other kind of time-frequency transforms 
etc. We will not go into more detail and refer the interested reader to one of the numerous books on wavelet 
methods and their applications such as [6] or [12].
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1.2. Signal processing on graphs

Our aim is to define a multiresolution analysis on a generic weighted finite graph G = (X , w, μ), where:

• X is the set of vertices of G with cardinality |X | = n;
• w : X × X �→ R+ is a weight function, which associates to each pair (x, y) a positive weight w(x, y);
• μ is a measure on X such that w is reversible w.r.t. μ, meaning that

∀x, y ∈ X , μ(x)w(x, y) = μ(y)w(y, x) . (1)

The weight function w provides a graph structure on X , (x, y) being an edge of the graph iff w(x, y) > 0. 
On such a graph, the operations of translation and downsampling are no longer canonically defined and 
several attempts to tackle these issues and generalize the wavelet constructions have been proposed: see [21]
for a review on this subject and [11] for one of the most popular methods. We will describe some of them in 
section 1.5, but let us stress that when going to the case of a generic weighted graph, there are three main 
problems one has to face:

(Q1): What kind of downsampling should we use? What is the meaning of “keep one point out of two”?
(Q2): On which weighted graph should the approximation f1 be defined to iterate the procedure?
(Q3): Which kind of filters should one use? What is a good “local” mean?

This paper proposes a construction of a multiresolution analysis on a weighted graph which is based on 
a random downsampling method to answer question (Q1), and on Markov processes interwining to answer 
questions (Q2) and (Q3). Markov processes enter naturally into the game through the graph Laplacian L
defined on �2(X , μ) by

Lf(x) :=
∑
y∈X

w(x, y)(f(y) − f(x)), (2)

where f : X → R is an arbitrary function, and w(x, y) is now viewed as the transition rate from x to y. For 
x ∈ X , let

w(x) :=
∑

y∈X\{x}
w(x, y) .

Note that L acts on functions as the matrix, still denoted by L:

L(x, y) = w(x, y) for x �= y ; L(x, x) = −w(x) .

L is the generator of a continuous time Markov process X = (X(t), t ≥ 0), which jumps from x to a 
neighboring site y at random exponential times (see section 2.3). The law of X starting from x is denoted 
by Px, and Ex is the expectation w.r.t. Px. Apart from the symmetry assumption (1), we will assume 
throughout the paper that

L is irreducible. (3)

Under this assumption, μ is the unique (up to multiplicative constants) invariant measure of the process 
(X(t), t ≥ 0) (i.e. μL = 0), and μ(x) > 0 for any x ∈ X . Since X is finite, we can assume without loss of 
generality that μ is a probability measure on X .
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1.3. Our approach for downsampling, weighting and filtering procedures on graphs

The first step in our proposal of a multiresolution scheme consists in answering (Q1) and constructing a 
random subset X̄ of X , whose main feature is to be “well spread” on X . In this respect, we use an adaptation 
of Wilson’s algorithm ([24]) studied in [2], whose output is a random rooted spanning forest Φ on G. Its 
law πq depends on the weight function w and on a positive real q. This algorithm and the properties of the 
corresponding random forest will be described in section 3.3. The set of roots of Φ, denoted by ρ(Φ), has 
the nice property of being a determinantal process on X with kernel given by the Green kernel:

Kq(x, y) := q(qId − L)−1(x, y) = Px [X(Tq) = y] , (4)

where Tq is an exponential random variable with parameter q, independent of the process X. Being a 
determinantal process, the roots of Φ tend to repulse each other, and this repulsiveness property results in 
the noteworthy fact that the mean time needed by the process (X(t), t ≥ 0) to reach ρ(Φ), does not depend 
on the starting point in X \ ρ(Φ). Therefore, this set of roots is a natural choice for X̄ , especially as the 
parameter q can be tuned to control the mean number of points in ρ(Φ). See Section 3 for more details.

Once the downsampling X̄ is fixed, it remains to answer questions (Q2) and (Q3), i.e. we have to construct 
a weight function w̄ on X̄ × X̄ , and to define a filtering method which gives the approximation f1 and the 
detail g1 of a given function f0 in �2(X , μ). This will be achieved by looking for a solution (L̄, Λ) to the 
intertwining relation

L̄Λ = ΛL , (5)

where

• L̄ is a Markov generator on X̄ ;
• Λ : X̄ × X �→ R+ is a positive rectangular matrix.

An intertwining relation gives a natural link between two Markov processes living on different state spaces. 
It appeared in the context of diffusion processes in the paper by Rogers and Pitman [19], as a tool to state 
identities in laws, and was later successfully applied to many other examples (see for instance [3], [13], 
etc.). In the context of Markov chains, intertwining was used by Diaconis and Fill [7] to construct strong 
stationary times, and to control the rate of convergence to equilibrium. At the time being, applications 
of intertwining include random matrices [8], particle systems [23], etc. For our purpose, the intertwining 
relation can be very useful since

• L̄ provides a natural choice for the graph structure to be put on X̄ ;
• each row νx̄ := Λ(x̄, ·) (x̄ ∈ X̄ ) defines a positive measure on X , which can serve as a “local mean” 

around x̄. f0 will be approximated by the function f1 defined on X̄ by

∀x̄ ∈ X̄ , f1(x̄) := νx̄(f0) =
∑
x∈X

Λ(x̄, x)f0(x) ;

• it will serve as a basis for getting a Jackson-type inequality (see Proposition 18).

To be of any use in signal processing, the “filters” (νx̄, ̄x ∈ X̄ ) have to be well localized in space and 
frequency. In the graph context, frequency localization means that the filters belong to an eigenspace of the 
graph laplacian L. Hence, we are interested in solutions to (5) such that the measures (νx̄, ̄x ∈ X̄ ) are linearly 
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independent measures tending to be non-overlapping (space localization), and contained in eigenspaces of L. 
In addition, in order to iterate the procedure, we also need L̄ to be reversible on X̄ .

Note that saying that (Λ, L̄) is an exact solution to (5) implies that the linear space spanned by the 
measures (νx̄, ̄x ∈ X̄ ) is stable by L, and is therefore a direct sum of eigenspaces of L, so that these measures 
provide filters which are frequency localized. Hence the error in the intertwining relation is a measure of 
frequency localization: the smaller the intertwining error, the better the frequency localization. Finding 
solutions to (5) is the purpose of [1], where an exact linearly independent solution to (5) is provided. 
However this solution tends to be overlapping. [1] provides also approximate solutions to (5) with small 
overlapping, and it is one of these approximate solutions we use in our multiresolution analysis scheme. In 
order to describe it, we first consider the trace process of (X(t), t ≥ 0) on X̄ , i.e. the process (X(t), t ≥ 0)
sampled at the passage times on X̄ . This process is a Markov process on X̄ , whose generator L̄ defines a 
weight function w̄ on X̄ , symmetric with respect to the measure μ restricted on X̄ . We will recall some 
general facts about Markov processes, and make the previous statements more precise in section 2.3.

Turning to the rectangular matrix Λ, it depends on a parameter q′ and involves the Green kernel Kq′

(see definition (4)). The rectangular matrix Λ is just the restriction of Kq′ to X̄ × X . Note that

• when q′ goes to 0, for any x̄ ∈ X̄ , Kq′(x̄, y) goes to μ(y) so that (5) is clearly satisfied. μ being 
the left-eigenvector of L corresponding to the eigenvalue 0, the Kq′(x̄, y) are well frequency localized. 
However, the vectors (Kq′(x̄, ·), ̄x ∈ X̄ ) become linearly dependent and very badly space localized.

• when q′ goes to ∞, Kq′(x̄, ·) goes to δx̄. Hence, the space localization is perfect. However, the frequency 
localization is lost, and the error in (5) tends to grow.

Hence, a compromise has to be made concerning the choice of q′, and we will discuss this point later.
To sum up our proposal, two parameters q and q′ being fixed,

• take X̄ := ρ(Φ), Φ being sampled with πq. Set X̆ = X \ X̄ .
• L̄ is the generator of the trace process of X on X̄ . It can be shown (see Lemma 8 section 4.1) that L̄

is irreducible and reversible w.r.t. the probability measure μX̄ , which is the measure μ conditioned to 
the set X̄ : μX̄ (A) = μ(A ∩ X̄ )/μ(X̄ ). L̄ is actually the Schur complement in L, of L restricted to X̆ , 
which was already used for instance in [11]. For any x̄, ȳ in X̄ , such that x̄ �= ȳ, the weight function w̄
on X̄ × X̄ is then defined by w̄(x̄, ȳ) = L̄(x̄, ȳ).

• Λ(x̄, ·) := Kq′(x̄, ·).

f (=f0) being a function in �2(X , μ), we define the approximation of f as the function f̄ (=f1) defined on X̄
by

∀x̄ ∈ X̄ , f̄(x̄) = Λf(x̄) = Kq′f(x̄) , (6)

and its detail function as the function f̆ (=g1) defined on X̆ by

∀x̆ ∈ X̆ , f̆(x̆) = (Kq′ − Id)f(x̆) . (7)

We proved in [1] that some localization property of the (νx̄ = Λ(x̄, ·), ̄x ∈ X̄ ) defined by (6) followed from 
the fact that X̄ is a determinantal process with kernel Kq. Since X̆ = X \ X̄ is also a determinantal process, 
with kernel Id−Kq, this suggested the detail definition (7), in which the sign convention is chosen to have 
a self-adjoint analysis operator U : f �→ (f̄ , f̆) in �2(X , μ).

The process can then be iterated with (X̄ , L̄, μX̄ ) in place of (X , L, μ). This leads to a multiresolution 
scheme.
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1.4. Description of the results

We give now a description of our main results. Note that whatever the choice of a subset X̄ of X , one can 
still define L̄, Λ, f̄ and f̆ as we just did it previously. Our first set of results assumes that X̄ is any subset 
of X , and provides a reconstruction formula, and bounds on various operators including approximation, 
detail and analysis operators. They are expressed in terms of the hitting time of X̄ :

HX̄ := inf
{
t ≥ 0, X(t) ∈ X̄

}
.

To state them, we introduce some notation. First of all, we define the maximal rate α > 0 by

α = max
x∈X

w(x) . (8)

Hence, the matrix P = Id + L/α is a stochastic matrix on X . X̄ being any subset of X , we define the two 
positive real numbers β and γ by

1
γ

:= max
x̆∈X̆

Ex̆ [HX̄ ] , 1
β

:= max
x̄∈X̄

∑
z∈X

P (x̄, z)Ez [HX̄ ] . (9)

ᾱ denotes the maximal rate of L̄:

ᾱ := max
x̄∈X̄

−L̄(x̄, x̄) .

We stress the obvious fact that γ, β and ᾱ are functions of the subset X̄ .
Finally, when (M(u, v), u ∈ U , v ∈ V) is a rectangular matrix, when U is a subset of U , and V a subset 

of V, MUV denotes the submatrix of M obtained by restricting the entries of M to U and V .
To begin with our results, we get a reconstruction formula:

Reconstruction formula (Proposition 10).
For any f ∈ �2(X , μ), let f̄ ∈ �2(X̄ , μ) and f̆ ∈ �2(X̆ , μ) be defined by (6) and (7). Then,

f = R̄f̄ + R̆f̆ ,

where R̄ are R̆ are rectangular matrices indexed respectively by X×X̄ and X×X̆ , whose block decompositions 
are

R̄ =
(

IdX̄ − 1
q′ L̄

(−LX̆ X̆ )−1LX̆ X̄

)
, and R̆ =

(
LX̄ X̆ (−LX̆ X̆ )−1

−IdX̆ − q′(−LX̆ X̆ )−1

)
. (10)

We provide also upper bounds on norms of various operators: the approximation operator R̄, the detail 
operator R̆, and the interwining error operator L̄Λ − ΛL. These bounds are given here when these oper-
ators are seen as operators from one �∞ space to another one. They are stated in greater generality in 
Propositions 14, 11 and 16.

Approximation and detail operator norms (Propositions 14 and 11).
Let X̄ be any proper subset of X (i.e. ∅ � X̄ � X ), X̆ = X \ X̄ , and let R̄ and R̆ be the operators defined 
in (10). For any f̄ ∈ �∞(X̄ , μX̄ ) and any f̆ ∈ �∞(X̆ , μX̆ ),

∥∥R̄f̄
∥∥
∞,X ≤

(
1 + 2 ᾱ′

) ∥∥f̄∥∥∞,X̄ , and
∥∥∥R̆f̆

∥∥∥ ≤ max
(
α ; 1 + q′

) ∥∥∥f̆∥∥∥ ˘
. (11)
q ∞,X β γ ∞,X
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Intertwining error norm (Proposition 16).
Let X̄ be any proper subset of X , X̆ = X \ X̄ . For any f ∈ �∞(X , μ),

∥∥(L̄Λ − ΛL
)
f
∥∥
∞,X̄ ≤ 2q′α

β
‖f‖∞,X . (12)

Note that these bounds reflect the competition between 
∥∥(L̄Λ − ΛL

)
f
∥∥
∞,X̄ (frequency localization) and ∥∥R̄f̄

∥∥
∞,X (space localization). Actually, the term ᾱ/q′ appearing in (11) is a decreasing function of q′ and 

an increasing function of X̄ , while the term q′/β in (12) is increasing in q′ and decreasing in X̄ .
Other results are stated in the paper, including a bound on the norm of the detail f̆ in terms of the norm 

of Lf (Proposition 15), and a Jackson’s type inequality on the approximation error after K steps of the 
mutiresolution scheme (Proposition 18).

The other set of results focuses on the case where X̄ is the set of roots of the random forest Φ. They 
provide estimates on its cardinality 

∣∣X̄ ∣∣, and on the quantities ᾱ, β and γ involved in the previous statements. 
X̄ being random, all these quantities are random ones, and the estimates we get are averaged ones. To state 
them, we will assume that the random variable Φ is defined on some probability space (Ωf , Af , Pq). The 
corresponding expectation will be denoted by Eq.

Cardinality estimates (Proposition 6).
Let X̄ = ρ(Φ) and X̆ = X \ X̄ . Let r ∈ ]0; 1[, and define Rr = {x ∈ X ;w(x) ≥ rα} the set of “rapid” points. 
Then,

|X | q

q + α
≤ Eq

[∣∣X̄ ∣∣] ; Eq

[∣∣X̄ ∩ Rr

∣∣] ≤ |Rr|
q + (2 − r)α

q + 2α .

These estimates can be used to tune the parameter q in order to target a given proportion of kept points. 
Next, we obtain bounds on the quantities ᾱ, β and γ when X̄ = ρ(Φ). Unfortunately, these bounds are 
just lower bounds, and are moreover averaged ones. Nevertheless, since they are expressed in terms of the 
cardinality of ρ(Φ), they can easily be estimated by Monte Carlo methods, and can serve as a guide for 
the choice of q and q′. These are then the key estimates where our particular random choice for X̄ plays a 
central role.

Estimates on ᾱ, β, γ (Propositions 20, 21 and 22).
Let X̄ = ρ(Φ) and X̆ = X \ X̄ .

Eq [ᾱ] ≥ qEq

⎡
⎣

∣∣∣X̆ ∣∣∣∣∣X̄ ∣∣ + 1

⎤
⎦ , Eq

[
1
β

]
≥ Eq

⎡
⎣

∣∣∣X̆ ∣∣∣
α
∣∣X̄ ∣∣

⎤
⎦ , Eq

[
1
γ

]
≥ 1

q
Eq

⎡
⎣ |X |∣∣∣X̆ ∣∣∣ + 1

⎤
⎦ . (13)

Discussion on the choice of q and q′

Based on these estimates, we argue in section 6.4 that the parameter q should be chosen in [θ1α; θ2α] in 
order to ensure that the mean number of vertices of the subgraph is at least a given proportion (θ1/(θ1 +1)) 
of the size of the original graph, and that a given proportion of the rapid points are decimated. In addition 
it should minimize the function q �→ Eq(ᾱ/β), for the approximation operator norm and the intertwining 
error to be small (see (11) and (12)). The Monte-Carlo estimation of this function is computationally costly, 
so that we propose to minimize the function q ∈ [θ1α; θ2α] �→ qEq

[∣∣∣X̆ ∣∣∣ /(1 +
∣∣X̄ ∣∣)]Eq

[∣∣∣X̆ ∣∣∣ / ∣∣X̄ ∣∣]. This 
is possible in practice since, from [2], we can simultaneously sample a whole continuum of forests Φq for 
q ∈ [θ1α; θ2α], each of them with the correct distribution πq. Once q has been fixed, X̄ is sampled according 

to πq, ᾱ and β are computed and q′ is chosen equal to 2ᾱ
∣∣X̄ ∣∣ / 

∣∣∣X̆ ∣∣∣, which will ensure numerical stability of 
the algorithm (see Section 6.4).



956 L. Avena et al. / Appl. Comput. Harmon. Anal. 48 (2020) 949–992
1.5. Related works

Previous authors have explored multiresolution analysis on graphs, and have proposed answers to ques-
tions (Q1-3). Far from being exhaustive, we describe some of these, and refer the interested reader to [21]
for a more complete state of the art.

Concerning the downsampling procedure, also referred to as the graph coarsening problem, many ap-
proaches have been investigated. To mention a few, one can try to decompose the graph into bipartite 
graphs for which the notion of “one every two points” is clear. This is the way followed in [15,17], using 
either coloring-based downsampling, or maximum spanning tree. In [20], the partitioning of X into two sub-
sets, is based on the sign of the eigenfunction of −L associated to the maximal eigenvalue. Finally, the 
authors of [22] use a community detection algorithm maximizing the modularity, to partition the original 
graph into many connected subgraphs of small size. The vertices of the downsampled graph are the elements 
of the partition, and are not properly speaking selected points of the original graph.

Turning to the weighting procedure, bipartite graphs designed methods put an edge between two selected 
nodes, if they share at least a neighbor in the original graph, and the weight may be proportional to the 
number of shared neighbors. Starting from a bipartite graph, this leads immediately to a non bipartite 
subgraph, thus the need to “decompose” a graph by bipartite ones. The authors of [20] rely on the so-called 
Kron reduction, which is the same as computing the Schur complement. In [22], the weight between two 
communities is the sum of the weight of edges linking these communities.

Finally, as far as the filtering procedure is concerned, various filter banks have been proposed, leading 
sometimes to orthonormal basis, or just frames. The graph wavelet filtering bank of [16] is more specifically 
designed for bipartite graphs, and exploit the specific features of bipartite graph Laplacian. It produces 
an orthonormal basis. The diffusion wavelets of [4] are obtained by constructing orthonormal basis of the 
spaces (Vk−1 � Vk, k = 1, · · · , K), where Vk = �((−L)2k), and are thus designed to form an orthonormal 
basis. The spectral graph wavelets of [11] are functions of type g(−tL)δn where g is a function localized 
around 0 for the low-pass filters, or away from 0 for the high-pass ones. Different values of t are used to 
select different frequencies, thus leading to a frame. Since the computation of g(−tL) requires the knowledge 
of the spectral decomposition of L, polynomial approximations are performed. In [22], the filters used are the 
eigenfunctions of the Laplacians restricted to each small community, naturally leading to an orthonormal 
basis. In [10], assuming that we are given a subsampling procedure encoding the geometry of the original 
graph, the authors construct a Haar basis adapted to this subsampling.

Compared to these works, our downsampling approach through Wilson’s algorithm, is a partitioning 
method in the spirit of [22], a community corresponding to a tree of the forest. The mean number of 
selected points can be adjusted through the parameter q.

The filters we use are a special case of spectral graph wavelets of [11], the function g being equal to 
1/(1 + x) for the scaling function, and x/(1 + x) for the wavelet, and t corresponding to 1/q′ (note that 
Kq′ = q′(q′Id − L)−1 = (Id − L/q′)−1). This choice is very natural in the signal processing variational 
approach, since Kq′f minimizes the function g �→ 〈g,−Lg〉 + q′ ‖g − f‖2. Since we use only one value of t
at each step, the filter bank we obtain is a basis, which is not orthogonal, but tends to be so when q′ � 1
(in this case Kq′(x̄, ·) � δx̄, while (Kq′ − Id)(x̆, ·) � L(x̆, ·)/q′).

The weighting procedure through Kron reduction has also already be used in [20]. But in our approach, 
weighting and filtering are linked together through the intertwining relation.

To sum up, the advantages of our approach are:

• to provide a new partitioning method, allowing to tune the mean number of kept vertices;
• to link the subgraph structure and the choice of the filters through the intertwining relation;
• to produce a filter bank leading to a basis;
• to mimic the steps of a classical wavelet analysis algorithm;
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• to allow the computation of various error bounds;
• to suggest a systematic method to choose the parameters q and q′, and ensure numerical stability;
• to have a computational complexity similar to already existing methods. Actually, apart from the sam-

pling of the random forest which is of order α |X | /q, our approach only requires the computation of Kq′

and of the Schur complement, already present in [11,20]. Starting from a sparse matrix L, Kq′ can be 
efficiently approximated by polynomials of small order. Due to the good repartition property of our 
random X̄ , such a polynomial approximation can also be implemented for the inversion involved in the 
computation of L̄. This results in a sparse L̄, however the level of sparsity obtained is not enough to 
go on with the algorithm for large graphs. Hence, as in [20], a sparsification step can be added after 
the computation of L̄. Our proposition for this sparsification will be guided by the intertwining error 
bounds that provide a Jackson-like inequality (see Section 7).

Finally, we would like to mention that our multiresolution scheme construct a basis of the space of signals, 
which can be used to analyze, compress, etc., any signal on the graph. When one wants to handle just one 
specific signal, adaptative multiresolution schemes as in [9] may be more appropriate.

1.6. Organization of the paper

We begin in section 2 with notations used throughout the paper. Section 3 is devoted to the description 
and the properties of the random forest, and to the downsampling procedure. The weighting and the filtering 
procedures, X̄ being any subset of X , are discussed in section 4. We prove in this section the bounds on 
operator norms. We go on with the iterative scheme and Jackson’s inequality in section 5.2. The discussion on 
the choice of q and q′ and the estimates on ᾱ, β and γ, are given in section 6. We summarize the pyramidal 
algorithm and discuss computational issues in section 7, and we finally end with numerical experiments 
illustrating the method in section 8.

2. Notations and preliminary results

In this section, we give the notations used throughout the paper, and we state some useful results.

2.1. Sets of functions and measures

A function f on X will be seen as a column vector, whereas a signed measure on X will be seen as a row 
vector. For p ≥ 1, �p(X , μ) is the space of functions on X endowed with the norm

‖f‖p =
(∑

x∈X
|f(x)|p μ(x)

)1/p

.

The scalar product of two functions f and g in �2(X , μ) is

〈f, g〉 =
∑
x∈X

f(x)g(x)μ(x)

When f is a function on X , f� will denote the signed measure whose density w.r.t. μ is f : f�(A) =∑
x∈A μ(x)f(x) for all subset A of X . Similarly, when ν is a signed measure on X , ν� is the density of ν

w.r.t. μ: ν�(x) = ν(x)/μ(x) for any x ∈ X .
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2.2. Schur complement

Let M be a matrix of size n = p + r and let

M =
(
A B
C D

)

be its block decomposition, A being a square matrix of size p and D a square matrix of size r. If D is 
invertible, the Schur complement of D in M is the square matrix of size p defined by

SM (D) := A−BD−1C .

We remind the reader the following standard results concerning the Schur complement (see for in-
stance [25]):

Proposition 1. Assume that D is invertible.

(1) M =
(

Id B
0 D

)(
SM (D) 0
D−1C Id

)
.

(2) det(M) = det(D)det(SM (D)).
(3) M is invertible if and only if SM (D) is invertible. In that case,

M−1 =
(

SM (D)−1 −SM (D)−1BD−1

−D−1CSM (D)−1 D−1 + D−1CSM (D)−1BD−1

)
.

(4) Assume that M defines a positive symmetric operator in �2(X , μ). Let λmax(M) (respectively λmin(M)) 
be the largest (respectively the smallest) eigenvalue of M . Then, SM(D) is also positive symmetric and

λmin(M) ≤ λmin(SM (D)) ≤ λmax(SM (D)) ≤ λmax(M) .

2.3. Markov process

Consider an irreducible continuous time Markov process (X(t), t ≥ 0) on X , with generator L given 
by (2) satisfying (1) and (3). We recall the definition (8) of α > 0 as the maximal rate, and that of the 
matrix P := L/α + Id. P is an irreducible stochastic matrix, and we denote by (X̂k, k ∈ N) a discrete time 
Markov chain with transition matrix P . The process (X(t), t ≥ 0) can be constructed from (X̂k, k ∈ N)
and an independent Poisson process (τi, i ≥ 0) on R+ with rate α. At each event of the Poisson process, 
X moves according to the trajectory of X̂:

X(t) =
+∞∑
i=0

X̂i1τi≤t<τi+1 .

By (1) and (3), μ is strictly positive. In addition, −L defines a positive symmetric operator on �2(X , μ), 
and we denote by (λi; i = 0, · · · , n − 1) the real eigenvalues of −L in increasing order. It follows from the 
fact that P is irreducible that

0 = λ0 < λ1 ≤ λ2 · · · ≤ λn−1 ≤ 2α . (14)

The right eigenvector of −L associated to λi is denoted by ei:
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−Lei = λiei .

The (ei, i = 0, · · · , n − 1) are normalized to have an �2-norm equal to 1, and form an orthonormal basis 
of �2(X , μ). By construction, e0 = 1. For any subset A of X , HA is the hitting time of A by the process X:

HA := inf {t ≥ 0, X(t) ∈ A} ,

while H+
A is the return time to A by the process X:

H+
A := inf {t ≥ τ1, X(t) ∈ A} . (15)

3. Random spanning forests, Wilson’s algorithm and downsampling procedure

We spend now some time on the description and the properties of the spanning random forest Φ used in 
the downsampling procedure. Let us call E the set of unoriented edges of G, that is the set of pairs {x, y}
such that w(x, y) > 0 (and w(y, x) > 0). A spanning unoriented forest is a graph without cycles, with X as 
set of vertices, and a subset of E as edge set. An unoriented tree is a connected component of such a forest. 
By choosing in each tree one specific vertex, which we call root, we define a rooted spanning forest. Note 
that the number of roots is the same as the number of trees. Orienting each edge of a tree toward its root, 
we obtain an spanning oriented forest (s.o.f.) φ. The set of roots of a spanning oriented forest φ is denoted 
by ρ(φ). If e = (x, y) is an oriented edge, we will use w(e) for w(x, y), and say that e ∈ φ if e is an edge of 
a tree of the forest φ.

3.1. A probability measure on forests

We introduce now a real parameter q > 0, and associate to each oriented forest a weight

wq(φ) := q|ρ(φ)|
∏
e∈φ

w(e) , (16)

where |ρ(φ)| is the cardinality of ρ(φ), i.e. the number of trees in the forest φ. w1(φ) will be denoted by w(φ)
so that

wq(φ) := q|ρ(φ)|w(φ) .

These weights can be renormalized to define a probability measure on the set of spanning oriented forest:

πq(φ) := wq(φ)
Z(q) , (17)

where the partition function Z(q) is given by

Z(q) :=
∑

φ s.o.f.
wq(φ) . (18)

3.2. Wilson’s algorithm

A way to sample a random s.o.f. Φ from πq is given by the following iterative algorithm. Let Φc be the 
current state of the forest being constructed, and let Vc be the set of vertices of Φc. At the beginning, Vc is 
equal to ∅.

While X \ Vc �= ∅, perform the following steps:
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• Choose a point x at random in X \ Vc.
• Let evolve the Markov process (X(t), t ≥ 0) from x, and stop it either when it reaches Vc, or after an 

independent exponential time of parameter q.
• Erase the loops of the trajectory drawn by X. We obtain a self-avoiding path C starting from x and 

oriented towards its end-point.
• Add C to Φc.

Each iteration of the “while loop” stopped by the exponential time, gives birth to another tree. Wilson’s 
algorithm is not only a way to sample πq. It provides also a powerful tool to analyze it, the reason being 
that it does not depend on the way we “choose a point” in the first step of the “while” loop. In addition 
there exists a coupling of the probability measures πq for different values of q. This means that we can 
construct the random forests for different values of q from the same set of random variables. This coupling 
is explained in [2].

3.3. Properties of the random forest

Using Wilson’s algorithm, and the explicit knowledge of the law of a loop-erased Markov process, the 
following statement, as all the results stated in this section, is proven in [2]:

Proposition 2 (Partition function). The partition function Z(q) is the characteristic polynomial of L:

Z(q) = det(q Id − L) . (19)

Some other important features of the random s.o.f. Φ are listed below.

Proposition 3 (Number of roots). For all k ∈ {0, · · · , n},

Pq [|ρ(Φ)| = k] =
∑

I⊂{0,··· ,n−1}
|I|=k

∏
i∈I

q

q + λi

∏
i/∈I

λi

q + λi
.

Otherwise stated, the number of roots has the same law as 
∑n−1

i=0 Bi where B0, · · · , Bn−1 are independent, 
Bi having Bernoulli distribution with parameter q

q+λi
.

Note that since λ0 = 0, B0 = 1 a.s. and we recover the fact that |ρ(Φ)| ≥ 1 a.s.

Proposition 4 (Set of roots). ρ(Φ) is a determinantal process on X with kernel Kq (see definition in (4)), 
i.e. for any subset A of X ,

Pq(A ⊂ ρ(Φ)) = detA(Kq) ,

where detA is the minor defined by the rows and columns corresponding to A.

The following statement involves two independent sources of randomness, the Markov process X starting 
from x defined on (Ω, A, Px), and the random forest Φ defined on (Ωf , Af , Pq). Integration on the product 
space (Ω × Ωf , A ⊗Af ) w.r.t. the product measure Px,q := Px ⊗ Pq is denoted by Ex,q.

Proposition 5 (Hitting time of ρ(Φ)).



L. Avena et al. / Appl. Comput. Harmon. Anal. 48 (2020) 949–992 961
(1) For any x ∈ X ,

Ex,q

[
Hρ(Φ)

]
= Pq [|ρ(Φ)| > 1]

q
. (20)

(2) For any x ∈ X , and m ∈ {1, · · · , n},

Ex,q

[
Hρ(Φ)||ρ(Φ)|=m

]
= Pq [|ρ(Φ)| = m + 1]

qPq [|ρ(Φ)| = m] . (21)

Note that these expressions do not depend on the starting point x, saying that in some sense, the roots 
of the random forest are “well spread” on X .

3.4. The downsampling procedure

In view of the results of section 3.3, X̄ := ρ(Φ) is a natural candidate as a downsampling of X . We give 
now estimates on the mean of |ρ(Φ)| which unlike Proposition 3, do not depend on the knowledge of the 
eigenvalues λi. To this purpose, we introduce the mean value of the eigenvalues of −L/α:

m(L) := 1
|X |

|X |−1∑
i=0

λi

α
= Trace(−L)

α |X | .

Note that by (14), m(L) ∈ ]0, 2]. We get then

Proposition 6. Let X̄ = ρ(Φ) and X̆ = X \ X̄ . Then

(1) Eq

[∣∣X̄ ∣∣] ≥ |X | q
q+α .

(2) Eq

[∣∣∣X̆ ∣∣∣] ≥ |X | α
q+2αm(L).

(3) For any r ∈ [0, 1], set Rr := {x ∈ X s.t. w(x) ≥ rα}.

Eq

[∣∣∣X̆ ∩ Rr

∣∣∣] ≥ |Rr|
rα

q + 2α .

Remark. Hence, in a loose sense, X̄ contains a given proportion of points in X , and X̆ contains a given 
proportion of the “rapid” points in X , i.e. points for which the rate of escape is high. Since they do not 
depend on the spectral decomposition of L, these estimates can be helpful concerning the choice of q. Taking 
for instance q ∈ [2α/3; α] ensures that the mean proportion of sampled points is greater than 2/5, and that 
the mean proportion of decimated points is greater than m(L)/3.

The proof of Proposition 6 relies on the following lemma.

Lemma 7. For any x ∈ X , and any q > 0,

Kq(x, x) ≥ q

q + w(x) . (22)

1 −Kq(x, x) ≥ w(x)
q + λn−1

≥ w(x)
q + 2α . (23)

Proof. Remind that (ei, i = 0, · · ·n − 1) is an orthonormal basis of eigenfunctions of −L in �2(X , μ), and 
let (1x, x ∈ X ) be the canonical basis of RX (1x(y) = 0 for y �= x and 1x(x) = 1). Note that
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w(x) = −L(x, x) = −L1x(x) =
n−1∑
i=0

λi 〈ei,1x〉 ei(x) =
n−1∑
i=0

λiei(x)2μ(x) .

In the same way,

Kq(x, x) =
n−1∑
i=0

q

q + λi
ei(x)2μ(x) .

Note that for any x ∈ X ,

n−1∑
i=0

ei(x)2μ(x) =
n−1∑
i=0

〈1x, ei〉2
1

μ(x) = ‖1x‖2

μ(x) = 1 ;

Hence, for any x ∈ X , (e2
i (x)μ(x); i = 0, · · · , n − 1) is a probability distribution on {0, 1, · · · , n− 1}. The 

function λ ∈ R+ �→ q/(q + λ) being convex, it follows from Jensen’s inequality, that for any x ∈ X ,

Kq(x, x) ≥ q

q +
∑n−1

i=0 λiei(x)2μ(x)
= q

q + w(x) .

Moreover,

1 −Kq(x, x) =
n−1∑
i=0

λi

q + λi
ei(x)2μ(x) ,

≥ 1
q + λn−1

n−1∑
i=0

λiei(x)2μ(x) ,

= w(x)
q + λn−1

.

This ends the proof of Lemma 7, since λn−1 ≤ 2α. �
We return now to the proof of Proposition 6.

Proof. (1) It follows from Proposition 4 that Eq

[∣∣X̄ ∣∣] =
∑

x∈X Pq [x ∈ ρ(Φ)] =
∑

x∈X Kq(x, x). Using (22)
and the definition of α, we obtain that Eq

[∣∣X̄ ∣∣] ≥ q
q+α |X |.

(2) By Proposition 3, Eq

[∣∣∣X̆ ∣∣∣] =
∑n−1

i=0
λi

q+λi
≥ 1

q+λn−1
Trace(−L).

(3) By (23), Eq

[∣∣∣X̆ ∩ Rr

∣∣∣] =
∑

x∈Rr
Pq [x /∈ ρ(Φ)] =

∑
x∈Rr

(1 − Kq(x, x)) ≥
∑

x∈Rr

w(x)
q+λn−1

≥
|Rr| rα

q+λn−1
. �

4. The weighting and filtering procedures

This section aims to describe the weighting and the filtering procedures we use in the multiresolution 
scheme, once X̄ has been chosen. Hence, we will assume throughout this section that X̄ is any proper subset 
of X .

4.1. The weighting procedure

Let us define for any x̄, ȳ ∈ X̄ ,

P̃ (x̄, ȳ) := Px̄

[
X(H+

¯) = ȳ
]
. (24)
X
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P̃ is a stochastic matrix on X̄ , and one can associate to P̃ a weight function w̄ and a Markov generator L̄
on X̄ , which are unique up to multiplicative constants. The next lemma explains how to compute L̄ from L.

Lemma 8. Let X̄ be any proper subset of X , and set X̆ = X \X̄ . Let P̃ be the stochastic matrix on X̄ defined 
by (24). Then, LX̆ X̆ is invertible. Let L̄ be the Schur complement of LX̆ X̆ in L. L̄ is an irreducible Markov 
generator on X̄ , P̃ = Id + L̄/α, and for any x̄, ȳ ∈ X̄ , μ(x̄)L̄(x̄, ȳ) = μ(ȳ)L̄(ȳ, ̄x).

Proof. Let Q(x, ̄x) := Px

[
X(H+

X̄ ) = x̄
]
, so that P̃ = QX̄ X̄ . Using Markov property at time τ1 leads to

Q(x, x̄) =
∑
z∈X

P (x, z)Pz [X(HX̄ ) = x̄] = P (x, x̄) +
∑
z∈X̆

P (x, z)Q(z, x̄).

Hence, since P = Id + L/α,

{
QX̄ X̄ = PX̄ X̄ + PX̄ X̆QX̆ X̄
QX̆ X̄ = PX̆ X̄ + PX̆ X̆QX̆ X̄

⇐⇒
{

P̃ = PX̄ X̄ + PX̄ X̆QX̆ X̄
−LX̆ X̆QX̆ X̄ = LX̆ X̄

. (25)

We are now going to prove that −LX̆ X̆ is invertible. Let φX̆ be a vector of Ker(−LX̆ X̆ ), and let ψ := (0X̄ , φX̆ ). 
We get on one hand 〈ψ,−Lψ〉 = 0. On the other hand, 〈ψ,−Lψ〉 =

∑n−1
i=0 λi 〈ψ, ei〉2. Therefore, for any 

i ∈ {0, · · · , n− 1}, λi 〈ψ, ei〉2 = 0. λ0 = 0 being simple, 〈ψ, ei〉 = 0 for all i ≥ 1. Hence, ψ is colinear to 
e0 = 1. If X̆ �= ∅ and X̄ �= ∅, this implies that φX̆ ≡ 0. Hence −LX̆ X̆ is invertible. Going back to (25), we 
obtain that

QX̆ X̄ = (−LX̆ X̆ )−1LX̆ X̄ , (26)

and

P̃ = IdX̄ + 1
α
LX̄ X̄ − 1

α
LX̄ X̆ (LX̆ X̆ )−1LX̆ X̄ = IdX̄ + L̄

α
. (27)

Therefore, ∀x̄, ȳ ∈ X̄ , x̄ �= ȳ, L̄(x̄, ȳ) = αP̃ (x̄, ȳ) ≥ 0, and L̄1X̄ = 0. L̄ is thus a Markov generator on X̄ . The 
fact that L̄ is reversible w.r.t. μ is a direct consequence of the fact that L̄ is a Schur complement, and of 
the reversibility of L w.r.t. μ. Concerning the irreducibility statement, if x̄ and ȳ are two distinct elements 
of X̄ , the irreducibility of L implies that there exists a path in X going from x̄ to ȳ with positive probability 
for P . Sampling this path on the passage times on X̄ , we obtain a path in X̄ going from x̄ to ȳ with positive 
probability for P̃ . �

Once L̄ is defined, w̄ and ᾱ are defined in the same way that w and α were defined from L, i.e.

∀x̄ ∈ X̄ , w̄(x̄) := −L̄(x̄, x̄) ; ᾱ := max
x̄∈X̄

w̄(x̄) . (28)

4.2. The filtering procedure

We have now to define the “approximation” and the “detail” of a given function f on X , and to say how 
to reconstruct f from the approximation and the detail. This is the aim of this section.
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4.2.1. The analysis operator
Let q′ > 0 be fixed and define the collection (νx̄, ̄x ∈ X̄ ) of probability measures on X by

νx̄(x) = Kq′(x̄, x) .

Let (ρx̆, ̆x ∈ X̆ ) be the collection of signed measures on X defined by

ρx̆(x) = (Kq′ − Id)(x̆, x) . (29)

We associate to the collection of measures (νx̄, ρx̆)x̄∈X̄ ,x̆∈X̆ the corresponding collection of functions 
(φx̄, ψx̆)x̄∈X̄ ,x̆∈X̆ :

φx̄(x) := ν�x̄(x) = νx̄(x)
μ(x) ;ψx̆(x) := ρ�x̆(x) = ρx̆(x)

μ(x) . (30)

The functions (ψx̆, ̆x ∈ X̆ ) play the role of “wavelets” in our proposition of a multiresolution analysis. Note 
that the functions φx̄ are naturally normalized in �1(X , μ), but this is not the case for the functions ψx̆

(‖ψx̆‖1 = 2(1 − Kq′(x̆, ̆x))). Note also that for any x̆ ∈ X̆ , 〈ψx̆,1〉 = 0. In addition, we get the following 
result:

Lemma 9. The family (φx̄, ψx̆)x̄∈X̄ ,x̆∈X̆ is a basis of �2(X , μ).

Proof. Since μ(x) > 0 for all x ∈ X , it is equivalent to prove that the matrix M whose row vectors are 
given by (νx̄, ρx̆)x̄∈X̄ ,x̆∈X̆ is invertible. M can be rewritten in terms of its block matrices according to the 

rows and columns indexed by X̄ and X̆ :

M =
(
Kq′ |X̄ ,X̄ Kq′ |X̄ ,X̆
Kq′ |X̆ ,X̄ Kq′ |X̆ ,X̆ − IdX̆

)
.

Note that the eigenvalues of Kq′ − Id are the non positive real numbers (− λj

q′+λj
; j = 0, · · ·n − 1). Therefore 

λmax(Kq′ |X̆ ,X̆ − IdX̆ ) ≤ λmax(Kq′ − Id) = 0. Equality holds iff there exists an eigenfunction of Kq′ − Id
associated to the eigenvalue 0, which is contained in Span(1{x̆}; ̆x ∈ X̆ ). But, 0 is a simple eigenvalue 
of Kq′ − Id associated to the function 1. Since X̆ �= X , we get that λmax(Kq′ |X̆ ,X̆ − IdX̆ ) < 0. Thus, 
Kq′ |X̆ ,X̆ − IdX̆ is invertible and by Proposition 1,

det(M) = det(Kq′ |X̆ ,X̆ − IdX̆ ) det(SM (Kq′ |X̆ ,X̆ − IdX̆ )) . (31)

Concerning the Schur complement in (31), note that

SM (Kq′ |X̆ ,X̆ − IdX̆ ) = Kq′ |X̄ ,X̄ −Kq′ |X̄ ,X̆ (Kq′ |X̆ ,X̆ − IdX̆ )−1Kq′ |X̆ ,X̄

= IdX̄ + SKq′−Id(Kq′ |X̆ ,X̆ − IdX̆ ) .

Kq′ − Id is a symmetric negative operator in �2(X , μ) such that λmin(Kq′ − Id) = − λn−1
q′+λn−1

> −1. Using 
Proposition 1, we deduce that

λmin(SKq′−Id(Kq′ |X̆ ,X̆ − IdX̆ )) ≥ λmin(Kq′ − Id) > −1 .

Hence det(SM (Kq′ | ˘ ˘ − Id ˘)) > 0. We have thus proven that det(M) �= 0. �
X ,X X
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Once we have defined a basis (ξx)x∈X := (φx̄, ψx̆)x̄∈X̄ ,x̆∈X̆ of �2(X , μ), we are able to define the analysis 
operator

U : �2(X , μ) → RX

f �→ (〈ξx, f〉)x∈X = (〈φx̄, f〉 , 〈ψx̆, f〉)x̄∈X̄ ,x̆∈X̆

.

The hope is that when f is “regular” (a notion still to be defined), the coefficients (〈f, ψx̆〉)x̆∈X̆ are “small”. 
Actually, when f is a constant function, these coefficients are equal to zero. We stress the fact that these 
coefficients are not normalized. f can be reconstructed from the coefficients U(f). Let (ξ̃x)x∈X be the dual 
basis of (ξx)x∈X in �2(X , μ), defined by 〈ξ̃x, ξy〉 = δxy. Then we get the obvious reconstruction formula

f =
∑
x∈X

〈ξx, f〉 ξ̃x .

The approximation of f is then 
∑

ȳ∈X̄ 〈φȳ, f〉 ξ̃ȳ, while the detail of f is 
∑

y̆∈X̆ 〈ψy̆, f〉 ξ̃y̆. The reconstruction 
of f from its coefficients U(f) can here be made explicit. This is the content of the following proposition.

4.2.2. The reconstruction formula

Proposition 10 (Reconstruction formula). For any f ∈ �2(X , μ), let f̄ ∈ �2(X̄ , μ) and f̆ ∈ �2(X̆ , μ) be defined 
by

∀x̄ ∈ X̄ , f̄(x̄) = Kq′f(x̄) = U(f)(x̄) ;

∀x̆ ∈ X̆ , f̆(x̆) = (Kq′ − Id)f(x̆) = U(f)(x̆) .

Then,

f =
(

IdX̄ − 1
q′ L̄ LX̄ X̆ (−LX̆ X̆ )−1

(−LX̆ X̆ )−1LX̆ X̄ q′L−1
X̆ X̆ − IdX̆

)(
f̄

f̆

)
= R̄f̄ + R̆f̆ ,

where

R̄ =
(

IdX̄ − 1
q′ L̄

(−LX̆ X̆ )−1LX̆ X̄

)
, and R̆ =

(
LX̄ X̆ (−LX̆ X̆ )−1

−IdX̆ − q′(−LX̆ X̆ )−1

)
. (32)

Proof. Note that 
(
f̄

f̆

)
=

[
Kq′ −

(
0 0
0 IdX̆

)]
f . Since Kq′ = (Id − 1

q′L)−1, we get

(
Id − 1

q′
L
)(

f̄

f̆

)
=

[
Id −

(
Id − 1

q′
L
)(

0 0
0 IdX̆

)]
f =

(
IdX̄ LX̄ X̆ /q′

0 LX̆ X̆ /q′

)
f .

The inverse of 
(

IdX̄ LX̄ X̆ /q′

0 LX̆ X̆ /q′

)
is 

(
IdX̄ LX̄ X̆ (−LX̆ X̆ )−1

0 q′(LX̆ X̆ )−1

)
. Hence,

f =
(

IdX̄ LX̄ X̆ (−LX̆ X̆ )−1

0 q′(LX̆ X̆ )−1

)(
IdX̄ − 1

q′LX̄ X̄ − 1
q′LX̄ X̆

− 1
q′LX̆ X̄ IdX̆ − 1

q′LX̆ X̆

)(
f̄

f̆

)
,

=
(

IdX̄ − 1
q′ L̄ LX̄ X̆ (−LX̆ X̆ )−1

(−LX̆ X̆ )−1LX̆ X̄ q′(LX̆ X̆ )−1 − IdX̆

)(
f̄

f̆

)
. �
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In the sequel, we will talk about R̄ as the approximation operator, and about R̆ as the detail operator. In 
order to get stable numerical results in the analysis and the reconstruction of the signal f , it is important 
to control the operator norm of these operators. This is easy for the analysis operator U since for any 
f ∈ �p(X , μ),

‖U(f)‖p,X =
∥∥Kq′(f) − f1X̆

∥∥
p,X ≤ ‖Kq′(f)‖p,X + ‖f‖p,X .

Kq′ being a probability kernel, symmetric w.r.t. μ, we get by Jensen’s inequality,

‖Kq′f‖pp,X =
∑
x∈X

μ(x) |Kq′f(x)|p (33)

≤
∑
x∈X

μ(x)Kq′(|f |p)(x) = 〈1,Kq′(|f |p)〉 = 〈Kq′(1), |f |p〉 = ‖f‖pp,X . (34)

Hence for any f ∈ �p(X , μ),

‖U(f)‖p,X ≤ 2 ‖f‖p,X . (35)

The aim of the two following sections is to provide bounds on the norm of the reconstruction operator.

4.3. Detail operator norm

We give in this section a control on the norm of the detail operator R̆, in terms of β and γ defined in (9). 
Using Markov property at time τ1, one can express 1/β as

1
β

= max
x̄∈X̄

Ex̄

[
H+

X̄ − τ1

]
.

In the sequel, when A is a subset of X , and f is a function on A, ‖f‖p,A is the norm of f in �p(A, μA), 
where μA is the conditional probability μ on A: for any B ⊂ A, μA(B) = μ(B)/μ(A).

Proposition 11 (Detail operator norm). Let X̄ be any proper subset of X , X̆ = X \ X̄ , and let R̆ be the 
operator defined in (10). For any p ≥ 1, for any f ∈ �p(X̆ , μX̆ ),

∥∥∥R̆f
∥∥∥
p,X

≤
[(

α

β

)p/p∗

+
(

1 + q′

γ

)p
]1/p

μ(X̆ )1/p ‖f‖p,X̆ , (36)

where p∗ is the conjugate exponent of p.

The proof is a consequence of Lemmas 12–13 given below.

Lemma 12. For any x ∈ X , and x̆ ∈ X̆ , we define

GX̄ (x, x̆) = Ex

⎡
⎢⎣

H+
X̄∫

0

1X(s)=x̆ ds

⎤
⎥⎦ .

Then,

(−L ˘ ˘)−1 = (GX̄ ) ˘ ˘ , and L ¯ ˘(−L ˘ ˘)−1 = α(GX̄ ) ¯ ˘ . (37)
XX XX XX XX XX
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The adjoint operator of

(−LX̆ X̆ )−1 : �p(X̆ , μ) �→ �q(X̆ , μ)

is the operator

(−LX̆ X̆ )−1 : �q∗(X̆ , μ) �→ �p∗(X̆ , μ) .

The adjoint operator of

LX̄ X̆ (−LX̆ X̆ )−1 : �p(X̆ , μ) �→ �q(X̄ , μ)

is the operator

(−LX̆ X̆ )−1LX̆ X̄ : �q∗(X̄ , μ) �→ �p∗(X̆ , μ) ,

with

(−LX̆ X̆ )−1LX̆ X̄ (x̆, x̄) = Px̆ [X(HX̄ ) = x̄] , x̆ ∈ X̆ , x̄ ∈ X̄ . (38)

Proof.

GX̄ (x, x̆) = Ex

⎡
⎢⎣

τ1∫
0

1X(s)=x̆ ds +

H+
X̄∫

τ1

1X(s)=x̆ ds

⎤
⎥⎦ ,

= δx(x̆)Ex(τ1) +
∑
z∈X

P (x, z)Ez

⎡
⎢⎣

HX̄∫
0

1X(s)=x̆ ds

⎤
⎥⎦ by Markov property at time τ1 ,

= 1
α
δx(x̆) +

∑
z∈X̆

P (x, z)Ez

⎡
⎢⎣

H+
X̄∫

0

1X(s)=x̆ ds

⎤
⎥⎦ .

This can be rewritten as
{

(GX̄ )X̄ X̆ = PX̄ X̆ (GX̄ )X̆ X̆
(GX̄ )X̆ X̆ = 1

α IdX̆ + PX̆ X̆ (GX̄ )X̆ X̆
⇐⇒

{
−LX̆ X̆ (GX̄ )X̆ X̆ = IdX̆
(GX̄ )X̄ X̆ = 1

αLX̄ X̆ (GX̄ )X̆ X̆

⇐⇒
{

(−LX̆ X̆ )−1 = (GX̄ )X̆ X̆
LX̄ X̆ (−LX̆ X̆ )−1 = α(GX̄ )X̄ X̆

.

Using the symmetry of L with respect to μ, for any g ∈ �q�(X̆ , μ) and any f ∈ �p(X̆ , μ),

〈
(−LX̆ X̆ )−1f, g

〉
X̆ =

∑
x̆,y̆∈X̆

μ(x̆)(−LX̆ X̆ )−1(x̆, y̆)f(y̆)g(x̆)

=
∑

x̆,y̆∈X̆

μ(y̆)(−LX̆ X̆ )−1(y̆, x̆)f(y̆)g(x̆) =
〈
f, (−LX̆ X̆ )−1g

〉
X̆ .

In the same way, for all g ∈ �q�(X̄ , μ) and all f ∈ �p(X̆ , μ),
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〈
LX̄ X̆ (−LX̆ X̆ )−1f, g

〉
X̄ =

∑
x̄∈X̄ ;y̆,z̆∈X̆

μ(x̄)L(x̄, y̆)(−LX̆ X̆ )−1(y̆, z̆)f(z̆)g(x̄)

=
∑

x̄∈X̄ ;y̆,z̆∈X̆

μ(z̆)L(y̆, x̄)(−LX̆ X̆ )−1(z̆, y̆)f(z̆)g(x̄)

=
〈
f, (−LX̆ X̆ )−1LX̆ X̄ g

〉
X̆ .

(38) was already stated in the proof of Lemma 8 (see (26)). �
We are now able to give bounds on the norms of the operators involved in the definition of R̄ and R̆.

Lemma 13. Let X̄ be any proper subset of X , X̆ = X \ X̄ . β and γ being defined by (9), we get

∥∥(−LX̆ X̆ )−1LX̆ X̄ f
∥∥
p,X̆ ≤

(
α

β

μ(X̄ )
μ(X̆ )

)1/p

‖f‖p,X̄ . (39)

∥∥LX̄ X̆ (−LX̆ X̆ )−1f
∥∥
p,X̄ ≤

(
α

β

)1/p∗ (
μ(X̆ )
μ(X̄ )

)1/p

‖f‖p,X̆ . (40)

∥∥(−LX̆ X̆ )−1f
∥∥
p,X̆ ≤ 1

γ
‖f‖p,X̆ . (41)

Proof.
μ(X̆ )

∥∥(−LX̆ X̆ )−1LX̆ X̄ f
∥∥p
p,X̆ =

∑
x̆∈X̆

μ(x̆)
∣∣(−LX̆ X̆ )−1LX̆ X̄ f(x̆)

∣∣p ,

=
∑
x̆∈X̆

μ(x̆) |Ex̆ [f(X(HX̄ ))]|p by (38),

≤
∑
x̆∈X̆

μ(x̆)Ex̆ [|f(X(HX̄ ))|p] by Jensen’s inequality,

=
∑

x̆∈X̆ ,ȳ∈X̄

μ(x̆)((−LX̆ X̆ )−1LX̆ X̄ )(x̆, ȳ) |f |p (ȳ) by (38),

=
∑

x̆∈X̆ ,ȳ∈X̄

μ(ȳ)(LX̄ X̆ (−LX̆ X̆ )−1)(ȳ, x̆) |f |p (ȳ) by symmetry,

= α
∑
ȳ∈X̄

μ(ȳ) |f(ȳ)|p Eȳ

⎡
⎢⎣

H+
X̄∫

0

1X̆ (X(s)) ds

⎤
⎥⎦ by (37),

= α
∑
ȳ∈X̄

μ(ȳ) |f(ȳ)|p Eȳ

[
H+

X̄ − τ1

]
,

≤ αmax
x̄∈X̄

Ex̄

[
H+

X̄ − τ1

]
μ(X̄ ) ‖f‖p

p,X̄ .

This gives (39). (40) follows from (39), since the operator LX̄ X̆ (−LX̆ X̆ )−1 from �p(X̆ , μ) to �p(X̄ , μ) is the 
adjoint operator of the operator (−LX̆ X̆ )−1LX̆ X̄ from �p∗(X̄ , μ) to �p∗(X̆ , μ). Concerning (41), note that by 
Lemma 12, for any x̆, y̆ ∈ X̆ , (−LX̆ X̆ )−1(x̆, y̆) ≥ 0.

μ(X̆ )
∥∥(−LX̆ X̆ )−1f

∥∥p

p,X̆

=
∑

μ(x̆)
∣∣(−LX̆ X̆ )−1f(x̆)

∣∣p ,
x̆∈X̆
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=
∑
x̆∈X̆

μ(x̆)

∣∣∣∣∣∣
∑
y̆∈X̆

(−LX̆ X̆ )−1(x̆, y̆)f(y̆)

∣∣∣∣∣∣
p

,

≤
∑
x̆∈X̆

μ(x̆)

⎛
⎝∑

y̆∈X̆

(−LX̆ X̆ )−1(x̆, y̆)

⎞
⎠

p/p∗ ⎛
⎝∑

y̆∈X̆

(−LX̆ X̆ )−1(x̆, y̆) |f(y̆)|p
⎞
⎠

by Hölder’s inequality,

≤

⎛
⎝max

x̆∈X̆

∑
y̆∈X̆

(−LX̆ X̆ )−1(x̆, y̆)

⎞
⎠

p/p∗ ⎛
⎝ ∑

x̆∈X̆ ,y̆∈X̆

μ(x̆)(−LX̆ X̆ )−1(x̆, y̆) |f(y̆)|p
⎞
⎠ ,

≤

⎛
⎝max

x̆∈X̆

∑
y̆∈X̆

(−LX̆ X̆ )−1(x̆, y̆)

⎞
⎠

p/p∗ ⎛
⎝∑

y̆∈X̆

μ(y̆) |f(y̆)|p
∑
x̆∈X̆

(−LX̆ X̆ )−1(y̆, x̆)

⎞
⎠

by symmetry,

≤

⎛
⎝max

x̆∈X̆

∑
y̆∈X̆

(−LX̆ X̆ )−1(x̆, y̆)

⎞
⎠

p

μ(X̆ ) ‖f‖p
p,X̆

This ends the proof of (41) since by (37),

∑
y̆∈X̆

(−LX̆ X̆ )−1(x̆, y̆) = Ex̆

⎡
⎢⎣

H+
X̄∫

0

1X̆ (X(s)) ds

⎤
⎥⎦ = Ex̆

[
H+

X̄

]
= Ex̆ [HX̄ ] . �

Proof of Proposition 11. For any f ∈ �p(X̆ , μX̆ ),

∥∥∥R̆f
∥∥∥p
p,X

=
∥∥∥∥
(

LX̄ X̆ (−LX̆ X̆ )−1

−IdX̆ − q′(−LX̆ X̆ )−1

)
f

∥∥∥∥
p

p,X

= μ(X̄ )
∥∥LX̄ X̆ (−LX̆ X̆ )−1f

∥∥p

p,X̄ + μ(X̆ )
∥∥(IdX̆ + q′(−LX̆ X̆ )−1) f∥∥p

p,X̆

≤
[(

α

β

)p/p∗

μ(X̆ ) +
(

1 + q′

γ

)p

μ(X̆ )
]
‖f‖p

p,X̆ by (40) and (41) . �

4.4. Approximation operator norm

This section aims to control the operator norm of R̄ defined in (10).

Proposition 14 (Approximation operator norm). Let X̄ be any proper subset of X , X̆ = X \ X̄ , and let R̄ be 
the operator defined in (10). For any p ≥ 1, for any f ∈ �p(X̄ , μX̄ ),

∥∥R̄f
∥∥
p,X ≤

[(
1 + 2 ᾱ

q′

)p

+ α

β

]1/p

μ(X̄ )1/p ‖f‖p,X̄ , (42)

where ᾱ is defined by (28).
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Proof. For any f ∈ �p(X̄ , μX̄ ),

∥∥R̄f
∥∥p
p,X =

∥∥∥∥
(

IdX̄ − L̄
q′

(−LX̆ X̆ )−1LX̆ X̄

)
f

∥∥∥∥
p

p,X

= μ(X̄ )
∥∥∥∥
(

IdX̄ − L̄
q′

)
f

∥∥∥∥
p

p,X̄
+ μ(X̆ )

∥∥(−LX̆ X̆ )−1LX̆ X̄ f
∥∥p

p,X̆

≤ μ(X̄ )
∥∥∥∥
(

IdX̄ − L̄
q′

)
f

∥∥∥∥
p

p,X̄
+ μ(X̄ )α

β
‖f‖p

p,X̄ by (39) .

It just remains to prove that for any f ∈ �p(X̄ , μX̄ ),

∥∥L̄f∥∥
p,X̄ ≤ 2ᾱ ‖f‖p,X̄ .

By definition of ᾱ, the matrix P̃ = IdX̄ + L̄
ᾱ is a stochastic matrix, which is symmetric w.r.t. μX̄ . Therefore, 

it is a contraction operator from �p(X̄ , μX̄ ) to �p(X̄ , μX̄ ). Hence,

∥∥L̄f∥∥
p,X̄ = ᾱ

∥∥(IdX̄ − P̃ )f
∥∥
p,X̄ ≤ 2ᾱ ‖f‖p,X̄ . �

4.5. Size of the detail

In this section, we provide control of the unnormalized detail coefficients f̆ in terms of the regularity of 
the signal f .

Proposition 15. For any p ≥ 1 and any f ∈ �p(X , μ),

∥∥∥f̆∥∥∥
p,X̆

= ‖(Kq′ − Id)f‖p,X̆ ≤ maxx Kq′(x, X̆ )1/p

q′μ(X̆ )1/p
‖Lf‖p,X .

Proof. Note that by definition of Kq′ , Kq′ − Id = 1
q′Kq′L. Hence,

μ(X̆ ) ‖(Kq′ − Id)f‖p
p,X̆ = 1

q′ p

∑
x̆∈X̆

μ(x̆) |Ex̆ [Lf(X(Tq′)]|p ≤ 1
q′ p

∑
x̆∈X̆

μ(x̆)Ex̆ [|Lf(X(Tq′)|p] ,

≤ 1
q′ p

∑
x̆∈X̆ ,x∈X

μ(x̆)Kq′(x̆, x) |Lf(x)|p ,

≤ 1
q′ p

∑
x̆∈X̆ ,x∈X

μ(x)Kq′(x, x̆) |Lf(x)|p by symmetry ,

≤ maxx Kq′(x, X̆ )
q′ p

∑
x∈X

μ(x) |Lf(x)|p . �

4.6. Link between (X , L) and (X̄ , L̄)

We give bounds on the error in the interwining relation.

Proposition 16. Let X̄ be any proper subset of X , X̆ = X \ X̄ . Recall the definition of β given in (9). For 
any p ≥ 1, and any f ∈ �p(X , μ),
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∥∥(L̄(Kq′)X̄X − (Kq′)X̄XL
)
f
∥∥
p,X̄ ≤ 2q′

(
α

β

)1/p∗
1

μ(X̄ )1/p
‖f‖p,X . (43)

Proof. Writing that L̄ is a Schur complement and using that Kq′L = LKq′ , we get

L̄(Kq′)X̄X − (Kq′)X̄XL = LX̄ X̄ (Kq′)X̄X + LX̄ X̆
(
−LX̆ X̆

)−1 LX̆ X̄ (Kq′)X̄X − (LKq′)X̄X

= −LX̄ X̆ (Kq′)X̆X + LX̄ X̆
(
−LX̆ X̆

)−1 LX̆ X̄ (Kq′)X̄X

= LX̄ X̆
(
−LX̆ X̆

)−1 (LX̆ X̆ (Kq′)X̆X + LX̆ X̄ (Kq′)X̄X
)

= LX̄ X̆
(
−LX̆ X̆

)−1 (LKq′)X̆X . (44)

It has already been proven in Lemma 13 (see (40)), that for any f ∈ �p(X̆ , μX̆ ),

∥∥∥LX̄ X̆
(
−LX̆ X̆

)−1
f
∥∥∥
p,X̄

≤
(
α

β

)1/p∗ (
μ(X̆ )
μ(X̄ )

)1/p

‖f‖p,X̆

To get (43), it just remains to prove that for any f ∈ �p(X , μ),

‖LKq′f‖p,X̆ ≤ 2q′

μ(X̆ )1/p
‖f‖p,X . (45)

But this is a direct consequence of the equality LKq′ = q′(Kq′ − Id), and of the inequality (34). �
5. The multiresolution scheme

We assume in this section that we have at our disposal a decreasing sequence of proper subsets of X :

X0 = X � X1 � · · · � Xk � ∅ ,

and a sequence of non negative real parameters {q′i; i = 0, · · · k − 1}. We will discuss later the choice of such 
sequences. To stick to the previous notations, we define for i ≥ 0,

• X̄i = Xi+1;
• X̆i = Xi \ Xi+1;
• L0 = L, and for i ≥ 0, Li+1 = SLi

((Li)X̆i,X̆i
). Li is a Markov generator on Xi which is symmetric with 

respect to μ.
• αi = maxxi∈Xi

(−Li)(xi, xi);
• 1/βi = maxx̄i∈Xi+1 Ex̄i

[
H

(i)+
Xi+1

− τ
(i)
1

]
, where H(i)+

A is the return time on the set A of a Markov pro-

cess X(i) with generator Li, and τ (i)
1 is its first jump time (exponential time with parameter αi);

• 1/γi = maxx̆i∈X̆i
Ex̆i

[
H

(i)
Xi+1

]
;

• for any xi, yi ∈ Xi, Ki(xi, yi) = q′i(q′iIdXi
− Li)−1(xi, yi) = Pxi

[
X(i)(Tq′i

) = yi
]
, where Tq′i

is an expo-
nential random variable with parameter q′i independent of X(i).

Given a signal fi defined on Xi, we can define its approximation coefficients at scale i + 1:

∀xi+1 ∈ Xi+1 , fi+1(xi+1) = f̄i(xi+1) = K̄i(fi)(xi+1) , where K̄i := (Ki)Xi+1,Xi
,

and its detail coefficients at scale i + 1:
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∀x̆i ∈ X̆i , gi+1(x̆i) = f̆i(x̆i) = K̆i(fi)(x̆i) − fi(x̆i) where K̆i = (Ki)X̆i,Xi
,

so that

fi = R̄ifi+1 + R̆igi+1 ,

with

R̄i =
(

IdXi+1 − 1
q′i
Li+1

((−Li)X̆iX̆i
)−1(Li)X̆iXi+1

)
, and R̆i =

(
(Li)Xi+1X̆i

((−Li)X̆iX̆i
)−1

q′i((Li)X̆iX̆i
)−1 − IdX̆i

)
.

Iterating the procedure, we get the usual multiresolution scheme:

f0 = f → f1 → f2 · · · → fk
↘ ↘ ↘

g1 g2 gk

5.1. Analysis operator norm

For k ≥ 1, let us consider the analysis operator Uk:

Uk :
�p(X ) → �p(Xk, μXk

) × �p(X̆k−1, μX̆k−1
) × · · · × �p(X̆0, μX̆0

)
f �→ [fk, gk, gk−1, · · · , g1]

The space �p(Xk, μXk
) × �p(X̆k−1, μX̆k−1

) × · · · × �p(X̆0, μX̆0
) is endowed with the norm

‖[fk, gk, gk−1, · · · , g1]‖p :=
(
μ(Xk) ‖fk‖pp,Xk

+
k∑

i=1
μ(X̆i−1) ‖gi‖pp,X̆i−1

)1/p

.

Proposition 17 (Analysis operator norm). For any f ∈ �p(X , μ),

‖Uk(f)‖p ≤ 21/p∗
(1 + k)1/p ‖f‖p . (46)

Remark. To maintain localization properties of our wavelet basis we do not use any orthogonalization 
procedure. Then, working with a general graph, we do not expect a conditioning of the multilevel analysis 
or reconstruction operator that is independent from the graph size. However for p = ∞ our analysis operator 
norm is independent of the graph size, while, for p < ∞ it depends only on the number of levels, which is 
typically only logarithmic in the graph size. Making a careful analysis of the following proof, we will see 
that at least in the case p = 1 our estimation is optimal for the analysis operator we proposed. As far as 
the multilevel reconstruction operator is concerned, its norm is strongly related with the choice of the q′i
that we will discuss at the end of Section 6.

Proof.
‖Uk(f)‖pp =

∑
xk∈Xk

μ(xk) |fk(xk)|p +
k∑

i=1

∑
x̆i−1∈X̆i−1

μ(x̆i−1) |gi(x̆i−1)|p ,

=
∑

xk∈Xk

μ(xk)
∣∣(K̄k−1... · · · K̄0)(f)(xk)

∣∣p

+
k∑

i=1

∑
˘

μ(x̆i−1)
∣∣∣((K̆i−1 − IdX̆i−1Xi−1

)K̄i−2 · · · K̄0)(f)(x̆i−1)
∣∣∣p ,
x̆i−1∈Xi−1
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≤
∑

xk∈Xk

μ(xk)
∣∣(K̄k−1... · · · K̄0)(f)(xk)

∣∣p

+ 2p−1
k∑

i=1

∑
x̆i−1∈X̆i−1

μ(x̆i−1)
(∣∣∣(K̆i−1K̄i−2 · · · K̄0)(f)(x̆i−1)

∣∣∣p

+
∣∣(K̄i−2 · · · K̄0)(f)(x̆i−1)

∣∣p) ,

≤ 2p−1(ak + bk) ,

where

ak =
∑

xk∈Xk

μ(xk)(K̄k−1 · · · K̄0)(|f |p)(xk) +
k∑

i=1

∑
x̆i−1∈X̆i−1

μ(x̆i−1)(K̆i−1K̄i−2 · · · K̄0)(|f |p)(x̆i−1)

bk =
k∑

i=1

∑
x̆i−1∈X̆i−1

μ(x̆i−1)(K̄i−2 · · · K̄0)(|f |p)(x̆i−1) .

Note that
∑

xk∈Xk

μ(xk)(K̄k−1 · · · K̄0)(|f |p)(xk) +
∑

x̆k−1∈X̆k−1

μ(x̆k−1)(K̆k−1K̄k−2 · · · K̄0)(|f |p)(x̆k−1)

=
∑

xk−1∈Xk−1

μ(xk−1)(Kk−1K̄k−2 · · · K̄0)(|f |p)(xk−1)

=
∑

xk−1∈Xk−1

μ(xk−1)(K̄k−2 · · · K̄0)(|f |p)(xk−1)

by symmetry. Therefore, ak = ak−1 = a1 = ‖f‖pp,X . Concerning bk, using symmetry, it holds

k∑
i=1

∑
x̆i−1∈X̆i−1

μ(x̆i−1)(K̄i−2 · · · K̄0)(|f |p)(x̆i−1)

=
∑

x0∈X0

μ(x0)|f(x0)|p
k∑

i=1

∑
x1∈X1

· · ·
∑

xi−2∈Xi−2

∑
x̆i−1∈X̆i−1

K0(x0, x1) · · ·Ki−3(xi−3, xi−2)Ki−2(xi−2, x̆i−1)

≤ k ‖f‖pp,X .

This ends the proof of (46). �
We finally give an example for which one can check that in the case p = 1 our estimation (46) is optimal. 

Consider the graph of size n = l + 1 with vertex set X = {0, 1, . . . , l} and transition rates

w(x, y) =

⎧⎪⎨
⎪⎩

ε2x+1 if y = x + 1,
ε2x if y = x− 1,
0 otherwise,

together with the signal

f(x) = ε2x−l, 0 ≤ x ≤ l,
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for ε � 1. Choosing qi = q′i = εi+
3
2 for 0 ≤ i ≤ k, the random subsets X0 ⊃ X1 ⊃ X2 ⊃ · · · sampled through 

Wilson’s algorithm are typically given by

Xi = {i, . . . , l}, i ≤ k,

and the inequalities of the previous proof are turned into equalities when p = 1 and in the limit ε → 0.

5.2. Approximation error

Given the coefficients [fk, gk, gk−1, · · · , g1], the reconstruction of f = f0 is

f = f0 = R̄0f1 + R̆0g1

= R̄0R̄1f2 + R̄0R̆1g2 + R̆0g1

= R̄0R̄1 · · · R̄k−1fk +
k−1∑
j=0

(R̄0 · · · R̄j−1)R̆jgj+1 .

The approximation of f at scale k is thus R̄0R̄1 · · · R̄k−1fk and we have the following Jackson’s type 
inequality:

Proposition 18 (Jackson’s inequality). For i ∈ {0, · · · , k − 1} let 
∣∣R̄i

∣∣
p

(
∣∣∣R̆i

∣∣∣
p

respectively) denote the norm 

operator of R̄i : �p(Xi+1, μXi+1) �→ �p(Xi, μXi
) (R̆i : �p(X̆i, μX̆i

) �→ �p(Xi, μXi
) respectively). We set

r̄i,p :=
(

μ(Xi)
μ(Xi+1)

)1/p ∣∣R̄i

∣∣
p
, r̆i,p :=

(
μ(Xi)
μ(X̆i)

)1/p ∣∣∣R̆i

∣∣∣
p
, and ei,p :=

(
μ(Xi+1)
μ(Xi)

)1/p ∣∣Li+1K̄i − K̄iLi

∣∣
p
.

For any p ≥ 1 and any f ∈ �p(X , μ),

∥∥f − R̄0R̄1 · · · R̄k−1fk
∥∥
p,X ≤

⎧⎨
⎩

k−1∑
j=0

r̄0,p · · · r̄j−1,pr̆j,p
1
q′j

⎫⎬
⎭ ‖Lf‖p,X

+

⎧⎨
⎩

k−1∑
j=0

r̄0,p · · · r̄j−1,pr̆j,p
1
q′j

j−1∑
l=0

el,p

⎫⎬
⎭ ‖f‖p,X . (47)

Note that it has been proven in Propositions 14, 11 and 16 that

r̄i,p ≤
[(

1 + 2αi+1

q′i

)p

+ αi

βi

]1/p

, r̆i,p ≤
[(

αi

βi

)p/p∗

+
(

1 + q′i
γi

)p
]1/p

, and ei,p ≤ 2q′i
(
αi

βi

)1/p∗

.

Moreover, we would like to stress the fact that the term involving ‖f‖p,X in (47) is linked to the error in 
the intertwining relation, and would disappear if this relation was exact.

In case the intertwining relation error is small, we can interpret our inequality (47) as a Jackson type 
inequality. Indeed in the setting of approximation theory, Jackson type inequalities relate the smoothness 
of a function with the approximation properties of a multiscale basis. Let us give some more details on 
these classical results in the setting of wavelet analysis. Assume φ is a real valued scaling function, in 
the Schwartz class or compactly supported, i.e. a function such that one can find a wavelet ψ such that 
{φ(. − k), k ∈ Z} ∪ {2j/2ψ(2j . − k), j ∈ N, k ∈ Z} is an orthonormal basis of L2(R), a so-called wavelet 
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basis. The construction of such kind of basis has a deep relationship with the discrete scheme described 
in the introduction 1.1 as it is explained in [12] (see also [6] for details). We can define for j ≥ 0, Vj :=
Span{φj,k = 2j/2φ(2j . − k), k ∈ Z} and Pjf the orthogonal projector on Vj .

The remarkable properties of wavelet basis make it possible to analyze functions in other functional spaces 
than L2(R). Suppose the function ψ of our basis has n vanishing moments with n ∈ N∗ (by construction 
ψ has always at least one vanishing moment). Let 1 ≤ p ≤ ∞ and Wn,p denote the Sobolev space of 
functions f in Lp whose derivative of order n belongs to Lp. Let |f |Wn,p = ‖dnf

dxn ‖Lp .
We have indeed the following result in the classical setting (see [5] for a detailed proof).

Theorem 19 (Classical Jackson’s inequality). There exists a constant C > 0 such that for all f ∈ Wn,p and 
j ≥ 0,

‖f − Pjf‖Lp ≤ C2−nj |f |Wn,p . (48)

As one can see, our Jackson’s inequality (47) relates also the smoothness of the signal f on the graph 
(measured by ‖Lf‖p,X ) provided that the error in the intertwining equation is small. The smallest is ‖Lf‖p,X , 
the closer to f should be the approximation part. As in the classical inequality (48), the constant in front 
of the Laplacian term depends on the level of approximation and gets worse when this level gets coarser.

We can now prove Proposition 18.

Proof. ∥∥f − R̄0R̄1 · · · R̄k−1fk
∥∥
p,X0

≤
k−1∑
j=0

∥∥∥(R̄0 · · · R̄j−1)R̆jgj+1

∥∥∥
p,X0

,

≤
k−1∑
j=0

j−1∏
i=0

∣∣R̄i

∣∣
p

∣∣∣R̆j

∣∣∣
p
‖gj+1‖p,X̆j

,

≤
k−1∑
j=0

j−1∏
i=0

∣∣R̄i

∣∣
p

∣∣∣R̆j

∣∣∣
p

(
μ(Xj)
μ(X̆j)

)1/p ‖Ljfj‖p,Xj

q′j
,

by Proposition 15. Since μ(X0) = 1, this leads to

∥∥f − R̄0R̄1 · · · R̄k−1fk
∥∥
p,X0

≤
k−1∑
j=0

r̄0 · · · r̄j−1r̆j
μ(Xj)1/p

q′j
‖Ljfj‖p,Xj

.

Now,

Ljfj = LjK̄j−1fj−1

= LjK̄j−1 · · · K̄0f0

= K̄j−1 · · · K̄0L0f0 +
j−1∑
l=0

K̄j−1 · · · K̄l+1
(
Ll+1K̄l − K̄lLl

)
K̄l−1 · · · K̄0f0 .

For any l ∈ {0, · · · , j − 1}, K̄l is an operator from �p(Xl, μXl
) to �p(Xl+1, μXl+1), and (34) states that ∥∥K̄l

∥∥
p
≤

(
μ(Xl)

μ(Xl+1)

)1/p
. Hence,

‖Ljfj‖p,Xj
≤

(
μ(X0)
μ(Xj)

)1/p

‖L0f0‖p,X0
+

j−1∑(
μ(Xl+1)
μ(Xj)

)1/p ∣∣Ll+1K̄l − K̄lLl

∣∣
p

(
μ(X0)
μ(Xl)

)1/p

‖f0‖p,X

l=0
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=
(
μ(X0)
μ(Xj)

)1/p
[
‖L0f0‖p,X0

+
j−1∑
l=0

el ‖f0‖p,X

]
.

This gives (47). �
6. About the choice of the parameters q, q′

The aim of this section is to give a guideline in the choice of the various parameters involved in the 
multiresolution scheme. The requirements we would like to achieve are the following ones:

(1) At each step of the downsampling, we would like to keep a fixed proportion of points in the current set. 
This would ensure that the number of steps k in the multiresolution scheme is of order log(|X |). In view 
of Proposition 6, this could be achieved by taking for all j ≥ 0, qj ∈ [θ1αj , θ2αj ] for some θ1, θ2. With 
this choice and the choice Xj+1 = ρ(Φ(j)) (where Φ(j) is the random s.o.f. on Xj associated to Lj), one 
has for instance,

∀j ≥ 0 , |Xj |
qj

qj + αj
≤ Eqj [|Xj+1| |Xj ] ≤ |Xj | − |Rj,r|

(
1 − rαj

qj + 2αj

)
,

where Rj,r = {x ∈ Xj ;wj(x) ≥ rαj}.
(2) To ensure numerical stability of the reconstruction operator, we would like to control at each step the 

norms of R̄j and R̆j . Concerning R̄j (see (42)), this requires αj+1/q
′
j and αj/βj to be small. As for R̆j

(see (36)), one has moreover to ensure that q′j/γj is small. Note that once Xj has been fixed, αj+1, βj

and γj only depend on the choice of Xj+1, hence of qj . Since αj+1/q
′
j and q′j/γj should be small, the 

product αj+1
q′j

q′j
γj

= αj+1
γj

should also be small, and one possible choice for qj is to minimize αj+1/γj .
(3) In order to get a good approximation error, one would also like the error in the intertwining problem 

between Lj and Lj+1 to be small. Referring to (47), this is achieved if at each step q′j(αj/βj)1/p
∗ is 

small with respect to the natural unit αj .

To sum up, Xj being chosen, one would like to choose (qj , q′j) such that

(C1): qj ∈ [θ1αj , θ2αj ];
(C2): αj/βj is small;
(C3): αj+1/q

′
j is small;

(C4): q′j/γj is small;
(C5): q′jαj/βj is small (consider the case p = +∞) with respect to αj .

In this respect, we need some estimates on αj+1, γj and βj in terms of qj . The next sections are devoted to 
this task.

6.1. Estimate on ᾱ

Proposition 20. Assume that X̄ = ρ(Φ) and let X̆ = X \ X̄ . Then, for any m ∈ {1, · · · , |X | + 1},

Eq

[
ᾱ1∣∣X̄ ∣∣=m

]
≥ Eq

⎡
⎣ 1∣∣X̄ ∣∣ ∑

¯
w̄(x̄)1∣∣X̄ ∣∣=m

⎤
⎦ = q

|X | −m + 1
m

Pq

[∣∣X̄ ∣∣ = m− 1
]

; (49)

x̄∈X
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Eq [ᾱ] ≥ Eq

⎡
⎣ 1∣∣X̄ ∣∣ ∑

x̄∈X̄

w̄(x̄)

⎤
⎦ = qEq

⎡
⎣

∣∣∣X̆ ∣∣∣∣∣X̄ ∣∣ + 1

⎤
⎦ . (50)

Note that (49) is trivially true for m = |X | + 1. It is also trivially true for m = 1, since in this case L̄ is 
a scalar, which is equal to 0 since L̄ is a Markov generator.

Assuming that ᾱ = maxx̄∈X̄ w̄(x̄) is not too far from the mean of the (w(x̄), ̄x ∈ X̄ ), Proposition 20 can 

be used to get an idea of the dependence of ᾱ with respect to q (or m). Indeed, the term 

∣∣∣X̆ ∣∣∣∣∣X̄ ∣∣+1 can be 

numerically estimated as a function of q, since there is a coupling allowing to sample the random forest for 
all the values of q at the same time. Getting an idea of ᾱ as a function of q from the simulations, is more 
time consuming since it requires the computation of a Schur complement for all values of q, and this cannot 
been done inductively since ρ(Φ) is not an increasing set w.r.t. q.

Proof. (50) is a direct consequence of (49) after summing over m.

Eq

⎡
⎣ 1∣∣X̄ ∣∣ ∑

x̄∈X̄

w̄(x̄)1∣∣X̄ ∣∣=m

⎤
⎦ = 1

m

∑
x∈X

Eq

[
1x∈X̄ w̄(x)1∣∣X̄ ∣∣=m

]
.

Hence, the result is a consequence of the following identity: for any x ∈ X , and any m ∈ {1, · · · , n + 1},

Eq

[
1x∈X̄ w̄(x)1∣∣X̄ ∣∣=m

]
= qPq

[∣∣X̄ ∣∣ = m− 1;x /∈ X̄
]
. (51)

The rest of the proof is devoted to proving (51). Remind that

w̄(x) = −L̄(x, x) =
∑

y∈X̄ ,y �=x

L̄(x, y)

=
∑

y∈X̄ ,y �=x

L(x, y) + LX̄ X̆ (−LX̆ X̆ )−1LX̆ X̄ (x, y)

=
∑

y∈X̄ ,y �=x

w(x, y) +
∑

y∈X̄ ,y �=x

z1,z2 /∈X̄

w(x, z1)(−LX̆ ,X̆ )−1(z1, z2)w(z2, y)

Remind also from Lemma 12 (see (37)) that for z1, z2 ∈ X̆ , (−LX̆ ,X̆ )−1(z1, z2) = GX̄ (z1, z2). This gives an 
explicit expression of w̄(x) as a function of X̄ . Therefore,

Eq

[
1x∈X̄ w̄(x)1∣∣X̄ ∣∣=m

]
=

∑
R	x,|R|=m

Pq

[
X̄ = R

]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
y∈R,y �=x

w(x, y) +
∑

y∈R,y �=x
z1,z2 /∈R

w(x, z1)GR(z1, z2)w(z2, y)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Now,

Pq

[
X̄ = R

]
= 1

Z(q)
∑

φ s.o.f.,ρ(φ)=R

qmw(φ) = qm

Z(q)ZR(0) , (52)

where we set ZR(0) :=
∑

φ s.o.f.,ρ(φ)=R w(φ). In addition, it is proven in [2] (see Lemma 3.1, or Appendix B 
of the preprint) that for any subset R of X , and any z1, z2 /∈ R,
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GR(z1, z2) = Ez1

⎡
⎢⎣

H+
R∫

0

1X(s)=z2 ds

⎤
⎥⎦ = 1

ZR(0)
∑

φ s.o.f.ρ(φ)=R∪{z2}
z1�φz2

w(φ) , (53)

where z1 �φ z2 means that z1 is contained in the tree of φ, whose root is z2. Hence,

Z(q)q−mEq

[
1x∈X̄ w̄(x)1∣∣X̄ ∣∣=m

]
= T1 + T2 ,

where

• T1 :=
∑

R	x;|R|=m ZR(0)
∑

y∈R;y �=x w(x, y)
=

∑
φ,ρ(φ)	x
|ρ(φ)|=m

∑
y∈ρ(φ);y �=x w(φ)w(x, y)

=
∑

(φ,y)∈S1(m,x) w(φ)w(x, y)
where we set S1(m, x) := {(φ, y) such that ρ(φ) � x, |ρ(φ)| = m, y ∈ ρ(φ), y �= x}.

• T2 :=
∑

R	x;|R|=m

∑
y∈R;y �=x
z1,z2 /∈R

∑
φ s.o.f.ρ(φ)=R∪{z2}

z1�φz2

w(x, z1)w(φ)w(z2, y)

=
∑

(R,y,z1,z2,φ)∈S2(m,x) w(x, z1)w(φ)w(z2, y)
where we set

S2(m,x) :=
{

(R, y, z1, z2, φ) such that R � x, |R| = m, y ∈ R, y �= x,

z1 /∈ R, z2 /∈ R, ρ(φ) = R ∪ {z2} , z1 �φ z2

}
.

Let us compute T1. To any (φ, y) ∈ S1(m, x), we associate the forest φ1 = φ ∪ {(x, y)}, so that w(φ1) =
w(φ)w(x, y). φ1 is the forest obtained from φ by hanging the tree with root x to the root y. Hence |ρ(φ1)| =
m − 1, and the distance d(x, ρ(φ1)) from x to the roots of φ1, is equal to 1. Otherwise stated, S1(m, x) is 
sent by this operation to

F1(m,x) := {φ1 such that |ρ(φ1)| = m− 1, d(x, ρ(φ1)) = 1} .

Note that this correspondence is one to one. Starting from φ1 ∈ F1(m, x), we recover y as the root of the 
tree containing x, and φ is then obtained by cutting the edge (x, y). Thus,

T1 =
∑

φ1∈F1(m,x)

w(φ1) .

Let us now turn our attention to T2. To any (R, y, z1, z2, φ) ∈ S2(m, x), we associate the forest φ2 =
φ ∪{(x, z1), (z2, y)}, so that w(φ2) = w(x, z1)w(φ)w(z2, y). φ2 is the forest obtained from φ by first hanging 
the tree with root x to z1, so that x is now in the tree with root z2, and then z2 is attached to y. Hence 
|ρ(φ2)| = |ρ(φ)|−2 = m −1, and d(x, ρ(φ2)) ≥ 2 (it could happen that z1 = z2). Otherwise stated, S2(m, x)
is sent to

F2(m,x) := {φ2 such that |ρ(φ2)| = m− 1, d(x, ρ(φ2)) ≥ 2} .

Note that this correspondence is one to one. Starting from φ2 ∈ F2(m, x), we recover y as the root of the 
tree containing x; z1 is the point following x in the path going from x to y; z2 is the point preceding y in 
the path going from x to y; R = ρ(φ2) ∪{x}, and φ is obtained from φ2 by cutting the edges (x, z1), (z2, y). 
Thus,
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T2 =
∑

φ2∈F2(m,x)

w(φ2) .

It is clear that F1(m, x) and F2(m, x) are disjoint sets and that

F1(m,x) ∪ F2(m,x) = {φ such that |ρ(φ)| = m− 1;x /∈ ρ(φ)} .

This leads to

Eq

[
1x∈X̄ w̄(x)1∣∣X̄ ∣∣=m

]
= qm

Z(q)
∑

φ,|ρ(φ)|=m−1,
x/∈ρ(φ)

w(φ)

= qPq [|ρ(Φ)| = m− 1, x /∈ ρ(Φ)]

This ends the proof of (51) and of Proposition 20. �
6.2. Estimate on β

Proposition 21. Assume that X̄ = ρ(Φ) and let X̆ = X \ X̄ . Then, for any m ∈ {1, · · · , |X |},

Eq

[
1
β
1∣∣X̄ ∣∣=m

]
≥ Eq

⎡
⎣ 1∣∣X̄ ∣∣ ∑

x̄∈X̄

∑
z∈X̆

P (x̄, z)Ez(HX̄ )1∣∣X̄ ∣∣=m

⎤
⎦ = |X | −m

αm
Pq

[∣∣X̄ ∣∣ = m
]

; (54)

Eq

[
1
β

]
≥ Eq

⎡
⎣

∣∣∣X̆ ∣∣∣
α
∣∣X̄ ∣∣

⎤
⎦ . (55)

Proof. (55) is a direct consequence of (54) after summing over m.

Eq

⎡
⎣ 1∣∣X̄ ∣∣ ∑

x̄∈X̄

∑
z∈X̆

P (x̄, z)Ez(HX̄ )1∣∣X̄ ∣∣=m

⎤
⎦ = 1

m

∑
x∈X

Eq

⎡
⎣1x∈X̄

∑
z∈X̆

P (x, z)Ez(HX̄ )1∣∣X̄ ∣∣=m

⎤
⎦ .

Hence, the result is a consequence of the following identity: for any x ∈ X , and any m ∈ {1, · · · , |X |},

Eq

⎡
⎣1x∈X̄

∑
z∈X̆

P (x, z)Ez(HX̄ )1∣∣X̄ ∣∣=m

⎤
⎦ = 1

α
Pq

[∣∣X̄ ∣∣ = m;x /∈ X̄
]
. (56)

The rest of the proof is devoted to state (56). For x ∈ X̄ and z ∈ X̆ , P (x, z) = w(x, z)/α, and summing 
over z2 in (53) leads to:

∀z /∈ R , Ez(HR) = 1
ZR(0)

∑
y/∈R

∑
φ s.o.f.ρ(φ)=R∪{y}

z�φy

w(φ) (57)

Therefore, using (52),
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Eq

[
1x∈X̄

∑
z∈X̆ P (x, z)Ez(HX̄ )1∣∣X̄ ∣∣=m

]
= qm

αZ(q)
∑

R	x,|R|=m

∑
z /∈R;y/∈R

∑
φ s.o.f.ρ(φ)=R∪{y}

z�φy

w(x, z)w(φ)

= qm

αZ(q)
∑

(R,y,z,φ)∈S3(m,x) w(x, z)w(φ) ,

where

S3(m,x) := {(R, y, z, φ) such that R � x, |R| = m, y /∈ R, z /∈ R; ρ(φ) = R ∪ {y} , z �φ y} .

To any (R, y, z, φ) ∈ S3(m, x), we associate the forest φ3 = φ ∪ {(x, z)}, so that w(φ3) = w(x, z)w(φ). φ3 is 
the forest obtained from φ by hanging the tree with root x to z, so that x is now in the tree with root y. 
Hence |ρ(φ3)| = |ρ(φ)| − 1 = m, and d(x, ρ(φ3)) ≥ 1 (it could happen that z = y). S3(m, x) is thus sent 
to F3(m, x) := {φ such that |ρ(φ)| = m,x /∈ ρ(φ)}. Note that this correspondence is one to one. Starting 
from φ3 ∈ F3(m, x), we recover y as the root of the tree containing x in φ3; z is the point following x in the 
path going from x to y in φ3; φ is obtained from φ3 by cutting the edge (x, z) so that x is a root of φ, and 
R = ρ(φ) \ {y}. Thus,

Eq

⎡
⎣1x∈X̄

∑
z∈X̆

P (x, z)Ez(HX̄ )1∣∣X̄ ∣∣=m

⎤
⎦ = qm

αZ(q)
∑

φ∈F3(m,x)

w(φ) = 1
α
Pq [|ρ(Φ)| = m;x /∈ ρ(Φ)] .

This ends the proof of (56) and of Proposition 21. �
6.3. Estimate on γ

Proposition 22. Assume that X̄ = ρ(Φ) and let X̆ = X \ X̄ . Then, for any m ∈ {0, · · · , |X |},

Eq

[
1
γ
1∣∣X̄ ∣∣=m

]
≥ Eq

⎡
⎣ 1∣∣∣X̆ ∣∣∣

∑
x̆∈X̆

Ex̆(HX̄ )1∣∣X̄ ∣∣=m

⎤
⎦ = |X |

|X | −m

1
q
Pq

[∣∣X̄ ∣∣ = m + 1
]

; (58)

Eq

[
1
γ

]
≥ 1

q
Eq

⎡
⎣ |X |∣∣∣X̆ ∣∣∣ + 1

⎤
⎦ . (59)

Note that (58) is trivially true for m = 0, since in this case 1/γ = +∞. It is also true for m = |X | with 
the convention 0/0 = 0 in the right hand side, since in this case 1/γ = 0.

Proof. Here again, (59) is a direct consequence of (58) after summing over m.

Eq

[
1∣∣∣X̆ ∣∣∣

∑
x̆∈X̆ Ex̆(HX̄ )1∣∣X̄ ∣∣=m

]

= 1
|X |−m

∑
x∈X Eq

[
1x/∈X̄Ex(HX̄ )1∣∣X̄ ∣∣=m

]
= 1

|X |−m

∑
x∈X

∑
R;x/∈R,|R|=m Pq(X̄ = R)Ex(HR)

= qm

(|X |−m)Z(q)
∑

x∈X
∑

R;x/∈R,|R|=m

∑
y/∈R

∑
φ s.o.f.ρ(φ)=R∪{y}

x�φy

w(φ)

= qm ∑ ∑
w(φ)
(|X |−m)Z(q) x∈X φ s.o.f.|ρ(φ)|=m+1
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= 1
q(|X |−m)

∑
x∈X

∑
φ s.o.f.|ρ(φ)|=m+1 Pq(Φ = φ)

= |X |
q(|X |−m)Pq(|ρ(Φ)| = m + 1) .

This ends the proof of (58) and of Proposition 22. �
6.4. Discussion on the choice of X̄ , q, q′

As was said in the beginning of the section, at each step of the multiresolution scheme, one would want 
to choose (q, q′) so as to fulfill the constraints (C1-5). If (C3) and (C4) are satisfied, then the quantity 
ᾱ/γ = (ᾱ/q′)(q′/γ) has to be small. In the same way, if (C3) and (C5) are satisfied, then ᾱ/β is small. One 
has therefore to choose X̄ at each step in such a way that ᾱ/γ and/or ᾱ/β are small. A possible choice for q
is then to minimize the functions q �→ Eq(ᾱ/γ), or q �→ Eq(ᾱ/β) in some interval [θ1α; θ2α] (in accordance 
to (C1)). These functions could be estimated using a Monte Carlo method. However, this can be quite costly, 
since for instance, the computation of ᾱ needs the computation of a Schur complement. If one can afford 
such a computation one time, doing it several times to get a Monte Carlo estimation is time consuming. 
Instead, in the simulations presented in section 8, we used the estimates (50) and (55). Denote

α̃(q) := qEq

⎡
⎣

∣∣∣X̆ ∣∣∣
1 +

∣∣X̄ ∣∣
⎤
⎦ ; 1

β̃(q)
:= 1

α
Eq

⎡
⎣
∣∣∣X̆ ∣∣∣∣∣X̄ ∣∣

⎤
⎦ ; 1

γ̃(q) := 1
q
Eq

⎡
⎣ |X |

1 +
∣∣∣X̆ ∣∣∣

⎤
⎦ .

These functions are quite easy to estimate by a Monte Carlo method. Indeed, a coalescence-fragmentation 
process has been proposed in [2], allowing to couple the random forests sampled according to πq for various 
values of q. In this process, t = 1/q is seen as a time variable. Starting from t0, the process begins to sample 
a random forest whose law is π1/t0 , and this forest evolves in a Markovian way with fragmentations or 
coalescences of trees. The marginal of this forest process (Φ(t), t ≥ t0) is at each time t, equal to π1/t. We 
refer the reader to [2] for further details on the construction. Using this coalescence-fragmentation process, 
it is easy to sample the random function q �→ |ρ(Φ(1/q))|, and to estimate the functions α̃(q), β̃(q), γ̃(q)
by empirical means over a sample. One can then choose q as a minimizer of q ∈ [θ1α; θ2α] �→ α̃(q)/β̃(q)
or q ∈ [θ1α; θ2α] �→ α̃(q)/γ̃(q). It can however be proven that α̃(q)/γ̃(q) is a decreasing function of q; and 
the reconstruction formulas show that numerical stability depends, just like our Jackson’s inequality, on 
the product of the 

∥∥R̄j

∥∥ (rather than 
∥∥R̆j

∥∥), which is associated with 1/β̃ (rather than 1/γ̃). Therefore we 
decided in the simulations of section 8, to minimize the function q ∈ [θ1α; θ2α] �→ α̃(q)/β̃(q), with θ1 = 1/8
and θ2 = 1.

Turning back to the choice of q′, we could choose it so that the two terms of the product (ᾱ/q′)(q′/β) =
ᾱ/β are of the same order. This leads to q′ = θ′1

√
ᾱβ. With this choice, one gets, using (42), (50)

and (55)

∥∥R̄∥∥
∞,∞ ≤ 1 + 2

θ′1

√
ᾱ

β
� 1 + 2

θ′1

√√√√ q

α

∣∣∣X̆ ∣∣∣
1 +

∣∣X̄ ∣∣
∣∣∣X̆ ∣∣∣∣∣X̄ ∣∣ ≤ 1 + 2

√
θ2

θ′1

∣∣∣X̆ ∣∣∣∣∣X̄ ∣∣ ≤ |X |∣∣X̄ ∣∣
if we choose θ′1 = 2

√
θ2. This value of θ′1 ensures that the multiplicative term appearing in Jackson’s 

inequality (47) for p = +∞ behaves nicely:

j−1∏(
1 + 2αi+1

q′

)
≤

j−1∏ |Xi|
|Xi+1|

= |X0|
|Xj |

. (60)

i=0 i i=0
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Another possible choice (made in the simulations results of section 8) is to ensure (60) by setting

1 + 2αi+1

q′i
= |Xi|

|Xi+1|
⇐⇒ q′i = 2αi+1

|Xi+1|∣∣∣X̆i

∣∣∣ .

7. A summary of the procedure, and computational issues

7.1. Summary

Fix two real numbers θ1, θ2 (θ1 = 1/8 and θ2 = 1 in our simulations). Starting from (X , L, α, μ), one 
iteration of our multiresolution scheme goes through the following steps:

(1) Choice of q. Make N i.i.d. draws (N = 1 in our simulations) of the coalescence-fragmentation forest 
process (Φ(i)

t ; t ∈ [1/(θ2α); 1/(θ1α)], i = 1, · · · , N). From this, estimate the functions

α̃(q) � q
1
N

N∑
i=1

|X | −
∣∣∣ρ(Φ(i)

1/q)
∣∣∣

1 +
∣∣∣ρ(Φ(i)

1/q)
∣∣∣ ,

and

1
β̃(q)

� 1
Nα

N∑
i=1

|X | −
∣∣∣ρ(Φ(i)

1/q)
∣∣∣∣∣∣ρ(Φ(i)

1/q)
∣∣∣ .

Choose qopt as the minimizer in [θ1α; θ2α] of the estimation of α̃(q)
β̃(q) .

(2) Once qopt is chosen, draw one forest Φ from πqopt . Take X̄ = ρ(Φ), X̆ = X \ X̄ , μ̄ = μ(·|X̄ ).

(3) Compute L̄ = LX̄ ,X̄ − LX̄ ,X̆

(
LX̆ ,X̆

)−1
LX̆ ,X̄ , and ᾱ = maxx̄∈X̄ (−L̄(x̄, ̄x)).

(4) Choose q′ = 2ᾱ
∣∣∣X̆ ∣∣∣ / 

∣∣X̄ ∣∣. Compute Kq′ = q′(q′Id − L)−1. This can be done by a polynomial approxi-
mation. The scaling functions are then

x �→ φx̄(x) = Kq′(x̄, x)
μ(x) ,

while the wavelets are

x �→ ψx̆(x) = (Kq′ − Id)(x̆, x)
μ(x) .

Compute also the reconstruction operators R̄ and R̆.
(5) Go on with (X̄ , L̄, μ̄, ᾱ) in place of (X , L, μ, α).

7.2. Numerical issues

The three main computational issues at each step of the algorithm are:

(1) the N sampling of the coalescence-fragmentation forest process (Φ(i)
t )t∈[ 1

θ2α ; 1
θ1α ];i=1,··· ,N . As proved 

in [14], the mean time to sample Φq is equal to 
∑n−1 1 , corresponding to a number of random 
i=0 q+λi
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jumps for the Markov chain of order 
∑n−1

i=0
α

q+λi
≤ α|X |

q . Hence, the number of operations to sample N
realizations of the forest process is of order N |X | /θ1.

(2) the computation of the Schur complement. This requires to compute the inverse (−LX̆ ,X̆ )−1. Note that

(−LX̆ ,X̆ )−1 = 1
α

(IdX̆ − PX̆ ,X̆ )−1 = 1
α

+∞∑
k=0

(PX̆ ,X̆ )k . (61)

Since (PX̆ ,X̆ )k(x̆, y̆) is the probability for the discrete time Markov Chain to go from x̆ to y̆ in k steps 
without entering X̄ , and since X̄ is “well spread”, this probability is fast decaying in k, so that a good 
approximation of (−LX̆ ,X̆ )−1 is obtained by truncating the series in (61) to the first terms.
The computation of (−LX̆ ,X̆ )−1 is then fast if the matrix −LX̆ ,X̆ is sparse. This may be satisfied by L
at the beginning of the algorithm, but even if L is sparse, this is usually no more the case for L̄ (see 
Fig. 2). Therefore, after the computation of L̄, the authors of [11,20] perform a sparsification method. In 
our frame, it would be convenient that the sparsification step does not alter too much the error bound 
we get on 

∥∥(Kq′)X̄ ,XL − L̄(Kq′)X̄ ,X
∥∥. Denote by L̄s the sparsified version of L̄, and let us consider the 

interwining error:

∥∥(Kq′)X̄ ,XL − L̄s(Kq′)X̄ ,X
∥∥
∞,∞

≤
∥∥(Kq′)X̄ ,XL − L̄(Kq′)X̄ ,X

∥∥
∞,∞ +

∥∥(L̄ − L̄s)(Kq′)X̄ ,X
∥∥
∞,∞

≤
∥∥(Kq′)X̄ ,XL − L̄(Kq′)X̄ ,X

∥∥
∞,∞ +

∥∥L̄ − L̄s

∥∥
∞,∞

≤
∥∥(Kq′)X̄ ,XL − L̄(Kq′)X̄ ,X

∥∥
∞,∞ + max

x̄∈X̄

∑
ȳ∈X̄

∣∣L̄(x̄, ȳ) − L̄s(x̄, ȳ)
∣∣ .

Therefore, the sparsification should for instance satisfy

max
x̄∈X̄

∑
ȳ∈X̄

∣∣L̄(x̄, ȳ) − L̄s(x̄, ȳ)
∣∣ ≤ ∥∥(Kq′)X̄ ,XL − L̄(Kq′)X̄ ,X

∥∥
∞,∞ .

By building L̄s with this constraint only, and replacing L by Ls, we can however locally deteriorate a 
good intertwining approximation, i.e., increase a lot a small error

ε(x̄) =
∑
x∈X

∣∣(Kq′L
)
(x̄, x) −

(
L̄(Kq′)X̄ ,X

)
(x̄, x)

∣∣
by allowing this error to grow up to the order of ε = maxx̄∈X̄ ε(x̄). Since, at least from a probabilistic 
point of view (see [1] and its appendix), the collection of these local errors ε(x̄) is more meaningful than 
the global error ε we follow a more local and restrictive approach.
For θ ≥ 1 (θ = 4 in our simulation, except in Fig. 3 where we show the effect of different choices of θ in 
our sparsification scheme), we set to 0 a maximal number of coefficients on each row x̄ of L̄ until the 
off-diagonal suppressed weight remains below a targeted error level ε(x̄)ᾱ/2θα (the coefficients of L and 
L̄ are naturally on scale α and ᾱ respectively). But this has to be done in a symmetric way to ensure the 
symmetry of L̄s. In addition one has to make L̄s a Markov generator. To satisfy all these constraints, 
we proceed in the following way. We first sort in non-decreasing order the off-diagonal pairs (x̄, ȳ) (with 
x̄ �= ȳ) according to the quantity max(w̄(x̄, ȳ), w̄(ȳ, ̄x)). We then set δx̄ = 0 for all x̄ ∈ X̄ and screen the 
ordered off-diagonal pairs. Each time (x̄, ȳ) is such that δx̄ + w̄(x̄, ȳ) ≤ ε(x̄) and δȳ + w̄(ȳ, ̄x) ≤ ε(ȳ), we 
set to 0 both w̄(x̄, ȳ) and w̄(ȳ, ̄x). We also increase δx̄ by w̄(x̄, ȳ), and δȳ by w̄(ȳ, ̄x). We finally adjust 
the diagonal coefficients L̄(x̄, ̄x) by subtracting them the associated removed weight δx̄. This ensures
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Fig. 1. Original signals: (a) Signal on the line presented in [12]. (b) Signal on the Minnesota roads network: sign of the first Fourier 
mode e1. (c) Signal from [20] on the sensor graph from the GSPBox. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

max
x̄∈X̄

∑
ȳ∈X̄

∣∣L̄(x̄, ȳ) − L̄s(x̄, ȳ)
∣∣ ≤ ᾱ

θα

∥∥(Kq′)X̄ ,XL − L̄(Kq′)X̄ ,X
∥∥
∞,∞

≤
∥∥(Kq′)X̄ ,XL − L̄(Kq′)X̄ ,X

∥∥
∞,∞ .

In doing so, we can lose the irreducibility property, i.e., we can get a disconnected reduced graph 
associated with (X̄ , L̄s). This actually does not raise any particular difficulty. The only use we made of 
irreducibility was to define without ambiguity our reference measure μ. When irreducibility is lost, we 
simply proceed by using the natural restriction of μ as reference measure.

(3) the computation of Kq′ . As in [20], this can be done by Chebyshev polynomial approximation. Apart 
from computational gain, using polynomial approximation has the advantage to produce filters Kq′ with 
a good space localization as soon as L is nearly diagonal.

8. Numerical results

This section is devoted to numerical illustrations of our multiresolution scheme, referred to as “the 
intertwining wavelets multiresolution”. We show the results of some downsampling steps on Minnesota 
roads network (cf. Figs. 2 and 3) containing 2642 vertices, and use the multiresolution schemes to analyze
and compress the three benchmark signals of Fig. 1.

8.1. Downsampling of the Minnesota roads network

Fig. 2 shows the result of two levels of forest’s roots sampling, combined with the weighting procedure 
through Schur’s complement computation without sparsification. It illustrates the loss of sparsity of the 
weighting procedure. In Fig. 3, we used the sparsification method proposed in section 7.2 with three values 
of the parameter θ. On these graphs, the width of one edge is proportional to its weight.

8.2. Analysis

8.2.1. The line
We analyze the signal of Fig. 1(a) using our multiresolution scheme. The results after one step are 

presented in Fig. 4, where we can see that the big detail coefficients are located at the discontinuities of 
the original signal. We also compare our scheme with a classical wavelet scheme involving Daubechies12 
wavelets. The results are given in Fig. 5. After two steps, we end up with 370 approximation coefficients (f2), 
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Fig. 2. One sequence of Minnesota’s subgraphs, without sparsification. (a) Original graph. (b) First level of downsampling. (c) Second 
level of downsampling.

instead of 256 for the classical wavelets. In both cases, the number of non vanishing detail coefficients is 
small.

8.2.2. Minnesota graph
The analysis of the signal of Fig. 1(b) after two steps of the interwining wavelets multiresolution is 

presented in Fig. 6. Here again, the big detail coefficients are located at discontinuities of the signal.

8.2.3. Sensor graph
The analysis of the signal of Fig. 1(c) after two steps of the interwining wavelets multiresolution is 

presented in Fig. 7.

8.3. Compression

Now, we use the intertwining wavelets to compress the signals of Fig. 1. Since the intertwining wavelets ψx̆

are unnormalized, we normalize detail coefficients in the compression problem. More precisely, given a 
signal f , the unnormalized coefficients after one multiresolution step are f̄ and f̆ , from which we can 
reconstruct f by

f = R̄f̄ + R̆f̆ =
∑
x̄∈X̄

f̄(x̄)ξ̃x̄ +
∑
x̆∈X̆

f̆(x̆)ξ̃x̆ ,

where the dual basis (ξ̃x̄, ξ̃x̆)x̄∈X̄ ,x̆∈X̆ corresponds to the columns of matrices R̄ and R̆. Unlike the classical 
wavelets, the basis (ξx, x ∈ X ) and its dual basis (ξ̃x, x ∈ X ) are not orthonormal ones. Therefore to compress 
our signal, we truncate the “normalized coefficients” f̆(x̆) 

∥∥ξ̃x̆∥∥. In a similar way, after k multiresolution steps, 
the unnormalized coefficients are [fk, gk, gk−1, · · · , g1], from which we can reconstruct f by:

f = R̄0 · · · R̄k−1fk +
k−1∑
j=0

R̄0 · · · R̄j−1R̆jgj (62)

=
∑

xk∈Xk

fk(xk)ξ̃(k,k)
xk

+
k−1∑
j=0

∑
x̆j−1∈X̆j−1

gj(x̆j−1)ξ̃(k,j)
x̆j−1

(63)
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Fig. 3. One sequence of Minnesota’s subgraphs, using sparsification. On the first line, θ = 2, while θ = 4 and θ = 8 on the second 
and third ones. (a) First level of downsampling. (b) Second level of downsampling. (c) Third level of downsampling.

where (ξ̃(k,k)
xk , xk ∈ Xk) are the columns of the matrix R̄0 · · · R̄k−1, while (ξ̃(k,j)

x̆j−1
, ̆xj−1 ∈ X̆j−1) are the columns

of the matrix R̄0 · · · R̄j−1R̆j (j = 0, · · · k − 1). Given a threshold ε > 0, the compressed version of f is

fc =
∑

xk∈Xk

fk(xk)ξ̃(k,k)
xk

+
k−1∑
j=0

∑
x̆j−1∈X̆j−1

gj(x̆j−1) 1|gj(x̆j−1)|
∥∥∥ξ̃(k,j)

x̆j−1

∥∥∥≥ε
ξ̃
(k,j)
x̆j−1

.

Another way to compress f is to keep a fixed percentage of the highest (in absolute value) normalized detail 
coefficients. This is the way we have done our compression experiments.
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Fig. 4. One step of the analysis. The red crosses are the locations of the 608 chosen points in X̄ , while the blue circles correspond 
to the points of X̆ . The first figure is the original signal; the second one gives the approximations coefficients (f1), and the third 
one the detail coefficients (g1).

Fig. 5. Results of two steps of the multiresolution for the intertwining wavelets (first graph) and Daubechies 12 wavelets. The three 
parts of a graph give (g1, g2, f2).

8.3.1. The line
We compared the compression results of our method with those obtained using classical Daubechies12 

wavelets. We let our algorithm evolve until we get an approximation of size less than 16. In the experiment, 
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Fig. 6. Two steps of the intertwining wavelets multiresolution upsampled to the original graph: (a) f0; (b) R̄0R̄1f2; (c) R̆0g1; 
(d) R̄0R̆1g2.

Fig. 7. Two steps of the intertwining wavelets multiresolution upsampled to the original graph: (a) f0; (b) R̄0R̄1f2; (c) R̆0g1; 
(d) R̄0R̆1g2.

this was achieved after 20 steps, and led to 15 approximation coefficients. For classical wavelets, we get 16 
approximation coefficients after 6 steps. For both methods, a given proportion p of the details coefficients 
are kept to compute the compressed signals fc. Fig. 8 presents the relative errors ‖f − fc‖2 / ‖f‖2 in terms 
of p, and shows the good behavior of the intertwining wavelets. The compressed signal computed with 10% 
of normalized detail coefficients is shown in Fig. 9.
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Fig. 8. Relative compression error of signal in Fig. 1(a) in terms of the percentage of kept normalized detail coefficients. In red, the 
error using intertwining wavelets. In blue, error using Daubechies12 wavelets.

Fig. 9. Original signal (blue line) and compressed one (red line) keeping 10% of normalized detail coefficients.

8.3.2. The Minnesota graph
Fig. 10 gives the compressed signal computed with 10% of kept coefficients after 3 multiresolution steps.

In addition we compare the intertwining wavelets compression results with those obtained through the 
spectral graph wavelets pyramidal algorithm of [11,20]. For this purpose, we used the GSPBox1 [18]. The 
main features of this pyramidal algorithm are the following ones:

1 Available at https://lts2 .epfl .ch /gsp/.

https://lts2.epfl.ch/gsp/
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Fig. 10. Compression with 10% of kept coefficients. The first graph is the compressed signal, the second one is the error with the 
original one.

(1) Subsampling: X̄ is chosen according to the sign of the highest frequency Fourier mode en−1.
(2) Weighting: L̄ is computed by the Schur complement followed by a sparsification step.
(3) Approximation coefficients: f̄(x̄) = g(tL)(x̄), where g is a low-pass filter, and t is a positive real number. 

As in [20], we took g(x) = 1/(1 + x) and t = 2 to analyze the signal of Fig. 1(b). With this choice, 
f̄(x̄) = K1/2f(x̄).

(4) The signal f̄ on X̄ is then interpolated on the whole of X : ε > 0 being fixed, the interpolation is defined 
as

fint(x) = (Lε)−1
XX̄ L̄εf̄(x) ,

where Lε = εId − L, and L̄ε is the Schur complement of Lε
X̆ ,X̆ in Lε. Using Proposition 1, one can see 

at once that fint|X̄ = f̄ .
(5) The error prediction y = f − fint is stored.

At the end of one step, the signal f ∈ RX is encoded by (f̄ , y) ∈ RX̄×X , resulting in a redundant information. 
Fig. 11 presents the relative compression error in terms of the number of kept coefficients for the two 
methods. More precisely, we ran the spectral graph wavelets pyramidal algorithm for 7 steps, resulting in 
20 approximations coefficients among approximately 2 × 2642 stored ones. We also ran our intertwining 
wavelets multiresolution until getting approximately the same number of approximation coefficients to get 
a fair comparison. This took 16 steps, resulting in 16 approximation coefficients. We kept then the same 
number of the biggest coefficients to construct the compressed version of the signal.
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Fig. 11. Relative compression error of signal in Fig. 1(b), in terms of the number of kept coefficients. In red, the error using 
intertwining wavelets. In blue, error using the spectral graph wavelets pyramidal algorithm.

Fig. 12. Relative compression error of signal in Fig. 1(c), in terms of the number of kept coefficients. In red, the error using 
intertwining wavelets. In blue, error using the spectral graph wavelets pyramidal algorithm. In the first graph, we do not sparsify 
the graph, while we perform sparsification on the second.

8.3.3. Sensor graph
For the signal on the sensor graph we compare once again in the same way our method with the Pyramid 

algorithm on 3 steps. In this case we also included the results of our procedure without sparsification, 
since they surprisingly show that the sparsification improve the results. In Fig. 12, we compare the relative 
compression errors in terms of the number of kept coefficients for the Pyramid algorithm and our method 
with and without sparsification.
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