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Abstract. We introduce a novel harmonic analysis for functions defined on
the vertices of a strongly connected directed graph of which the random walk
operator is the cornerstone. As a first step, we consider the set of eigenvectors
of the random walk operator as a non-orthogonal Fourier-type basis for func-
tions over directed graphs. We found a frequency interpretation by linking
the variation of the eigenvectors of the random walk operator obtained from
their Dirichlet energy to the real part of their associated eigenvalues. From
this Fourier basis, we can proceed further and build multi-scale analyses on
directed graphs. We propose both a redundant wavelet transform and a dec-
imated wavelet transform by extending the diffusion wavelets framework by
Coifman and Maggioni for directed graphs. The development of our harmonic
analysis on directed graphs thus leads us to consider both semi-supervised
learning problems and signal modeling problems on graphs applied to directed
graphs highlighting the efficiency of our framework.

1. Introduction

In a world where data available for scientific or social purposes accumulates
at an exponential pace, managing, exploiting and analyzing this torrent of data
has become one of the challenges of our era. Some of them take form as graphs,
structures that arise in various fields such as neurosciences, the Internet, genomic
data, road transportations or social networks to name a few [78, 79]. Thus there is
a need to develop efficient mathematical and computational approaches to process
and analyze such graphs and data on graphs.

Among the existing methods, a large number involve the (graph) Laplacian [40,
39, 67, 42, 82]:

‚ As a fundamental subject in mathematics and physics, the Laplacian is
known and used, through its spectral study to extract relevant geometric
properties from a manifold [80] or a graph [34] and plays a role in machine
learning applications such as spectral clustering [82].

‚ In continuous space, the eigenfunctions of the Laplace-Beltrami operator
constitute the generalization of the Fourier basis on manifolds [80, 81].
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‚ In discrete space, the eigenvectors of the graph Laplacian form an orthonor-
mal Fourier-type basis for functions on undirected graphs [8, 7], when undi-
rected graphs are considered as a discretization or sampling of a mani-
fold [38, 37, 67, 42]. The eigenvalue associated with each eigenvector is
related to the notion of frequency [8].

Thanks to these properties, the graph Laplacian bridges the gap between spectral
graph theory and signal processing through the mathematical framework called
"signal processing on graphs" [8, 7]. This framework aims at extending the concepts
of classical signal processing such as filtering or sampling, for functions defined on
the vertices of a graph.

First developed in the context of undirected graphs, signal processing on graphs
considers the graph Laplacian (combinatorial or normalized) [34] as its core element.
The graph Laplacian is a symmetric positive semidefinite operator. By the spectral
theorem, the graph Laplacian admits an orthonormal basis of eigenvectors which
can be considered as Fourier modes, the corresponding eigenvalues being associated
with a notion of frequency.

The purpose of this paper is to provide some answers to the extension of the
framework of signal processing on graphs to the case of directed graphs. The
extension of signal processing on directed graphs is of interest because most data
circulating on graphs found in the scientific (e.g. neurosciences) or social (e.g. social
networks) fields are directed. Therefore, the analysis of information on directed
graphs also requires the development of mathematical approaches and therefore an
extension of the framework of signal processing on graphs to the case of directed
graphs.

Formally, the direct use of the core element of graph signal processing, i.e. the
graph Laplacian, is no longer appropriate. A directed graph is naturally repre-
sented by a non-symmetric adjacency matrix. It is always possible to naively define
a graph Laplacian in the directed case, but the spectral properties associated with
this undirected graph Laplacian (e.g. by obtaining an orthonormal basis and non-
negative real eigenvalues) are no longer verified in the case of directed graphs. There
is no simple consensus on a definition of a Laplacian for directed graphs for which
the variation of eigenvectors is linked to a notion of frequency. This is the main
challenge of signal processing on directed graphs and of this paper: which refer-
ence operator(s) should a Fourier analysis be built upon that would also generalize
Laplacian-based Fourier analysis on undirected graphs ?

Hereafter, the random walk operator on graphs [12, 14, 11] is proposed as being
a suitable reference operator for extending the framework of signal processing on
directed graphs. Like the graph Laplacian, the random walk operator is associated
to the notion of diffusion. It is as well defined on directed graphs as on undirected
ones. Assuming that the random walk operator is diagonalizable, it potentially
admits conjugated complex eigenvectors as well as associated conjugated complex
eigenvalues. Our framework is based on the fact that the variational analysis of
the eigenvectors of the random walk operator through their associated Dirichlet
energy [14] is related to the real part of the eigenvalue [87]. Therefore, the Dirichlet
energy of a given eigenvector of the random walk operator on a directed graph can
be considered as its frequency, using the same analogy as in [8], now for directed
graphs. Provided with this notion of frequency, the eigenvectors of the random walk
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operator form a suitable Fourier basis on directed graphs. It is furthermore consis-
tent with the undirected setting when the Fourier basis is based on the random-walk
Laplacian operator (see section 6.2).

By now considering the random walk operator as a reference operator and its
associated eigenvectors as a Fourier basis for functions defined on directed graphs,
the last part of our harmonic analysis on directed graphs consists in building a
multi-resolution analysis for functions defined on the vertices of an directed graph.
Complex graphs, both directed and undirected, have structures at different scales.
Motivated by the efficiency of multi-resolution wavelet analysis in traditional signal
processing [36] and the multi-scale dimension of graph data, a number of multi-
resolution graph constructions have emerged in recent years [21, 19, 20, 55, 52].
Here, we propose a new harmonic analysis built around the random walk operator
and whose multi-resolution constructions generalize graph spectral wavelets [20, 19]
and diffusion wavelets [21, 24] on directed graphs.

1.1. Literature review and related work. Wavelets [36, 50, 49, 46, 47, 48]
have been thoroughly investigated for over two decades. Their efficiency and suc-
cess in analyzing functions defined on the real line have led to their generalization
for functions defined on higher dimensional spaces such as the sphere [43, 44, 45]
or other manifolds [19, 21, 22, 5, 51, 52, 74]. The development of wavelets on
manifolds and the multi-scale feature of graphs and data on graphs led to the
extension of wavelets construction to the discrete space setting in recent years.
These wavelet-type constructions include wavelets on unweighted graphs [53], lift-
ing wavelets [54], diffusion wavelets [21, 22, 24], diffusion polynomial frames [19],
spectral graph wavelets [20, 60, 62], Haar-like wavelets [56, 57, 66, 61], average in-
terpolating wavelets [58], graph wavelets via deep learning [55], multi-scale pyramid
transform [63], tight wavelet frames on graphs [52, 4] and intertwining wavelets on
graphs via random forests [64]. The wavelet constructions mentioned above were
all developed on undirected graphs. In the present work, we intend to construct
a harmonic analysis on directed graphs. The first stage of the proposed harmonic
analysis is the development of a Fourier analysis.

In recent years, Sandryhaila and Moura generalized some fundamental concepts
of traditional signal processing such as filtering to directed graphs using the adja-
cency matrix as the central component of their framework [9]. They also proposed
the generalized eigenvectors of the adjacency matrix obtained by Jordan decompo-
sition as a Fourier-type basis on directed graphs [26]. As far as we know, no wavelet
design was developed in this framework, with the exception of the development of
the filterbank approach generalized in [6] which can be applied to bipartite directed
graphs and uses the adjacency matrix for a polyphase representation of the filters.

More recently, new Fourier-type bases for functions on directed graphs built as
the solutions of non-convex optimization problems. On the one hand, Sardellitti et
al. have proposed the construction of a Fourier basis on directed graphs as a set of
orthonormal vectors obtained by minimizing the Lovàsz extension of the graph cut
size [30]. On the other hand, Shafipour et al. also have proposed the construction
of a set of orthonormal vectors minimizing the spectral dispersion function [31].
Consequently, these bases proposed by [30, 31] are based on a specific notion of
variation. Contrary to the approaches [30, 31] which are not based on a specific
operator, our Fourier basis is non-orthogonal and obtained without solving non-
convex optimization problems. In addition, the study of the Dirichlet energy of
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the eigenvectors off the random walk operator enables the definition of a notion of
frequency associated with the basis. Furthermore, the basis is well-defined mathe-
matically, unlike the previous two since they are based on non-necessarily optimal
solutions of non-convex optimization problems.

Mhaskar has recently proposed the first wavelet-type frame construction for func-
tions defined on directed graphs [65] as an extension of the diffusion polynomial
frames [19]. Although our redundant wavelet construction on directed graphs is in-
spired in part by that of polynomial diffusion frames, it differs mainly in the choice
of the Fourier basis and the considered operator. Mhaskar proposes in [65] the set
of left-singular vectors of the weighted adjacency matrix of a directed graph as a
Fourier basis while we propose the set of eigenvectors of the random walk operator.

1.2. Contributions. The contributions of this article are the following:
(1) Construction of Fourier bases on directed graphs. We propose the

random walk operator associated with a random walk on a directed graph as
a reference operator. We propose the eigenvectors of the random walk op-
erator as a Fourier basis on directed graphs and determine a variational
characterization of the eigenvectors of the random walk operator – see
Proposition 6.1.

(2) Construction of multi-resolution analyses on directed graphs. We
propose an overcomplete spectral wavelet transform on directed graphs
in Section 8.1. This construction extends the framework of spectral wavelets
on undirected graphs [20] and diffusion polynomial frames [19]. We also pro-
pose a critically sampled wavelet transform in Section 8.2 generalizing the
framework of diffusion wavelets [21, 24] to the directed case.

(3) Efficiency of the theoretical framework through applications. The
development of our harmonic analysis on directed graphs leads us to con-
sider semi-supervised learning problems with regularization of type `2 in
Section 7.1 and `1 regularization in section 8.3.3 and signal modeling by
filtering on directed graphs in Section 7.2 highlighting the effectiveness of
our theoretical framework.

1.3. Outline of the paper. This paper is structured as follows. We introduce the
essential aspects of graph theory and review the foundations of graph signal pro-
cessing in Section 2. We present operators defined on directed graphs built from the
random walk operator and their properties in Section 4 and propose a new class of
operators on directed graphs expressed as the convex combination between the ran-
dom walk operator and its time version. Section 5 is dedicated to the presentation of
a Fourier transform on directed graphs as the set of eigenvectors of the random walk
operator. We propose in the Section 6 a Fourier-type analysis for functions defined
on directed graphs by studying the variation of the random walk’s eigenvectors. To
illustrate our Fourier-type analysis, we study the machine learning problems in Sec-
tion 7 such as semi-supervised learning and signal modeling on directed graphs and
show through numerical experiments the efficiency of our framework with respect
to the existing approaches. Section 8 is dedicated to multiresolution analyses on
directed graphs. There, we present both a redundant wavelets construction, as well
as a critically sampled wavelets construction with the random walk operator as a
reference operator and we illustrate these multiresolution analyses through some
examples. We conclude in Section 9.
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2. Fundamentals of signal processing on graphs

Signal processing on graphs [8, 9, 7] is a mathematical framework in which the
core concepts of harmonic analysis are generalized to functions defined on the ver-
tices of a given arbitrary graph. In this section, we introduce the essential aspects
and give some additional remarks to the signal processing on graphs framework.

2.1. Graph theory setup. Let G “ pV, E , wq be a weighted directed graph where
V “ tv1, . . . , vNu is a finite set of vertices, E Ď V ˆ V is a set of directed edges.
Each edge eij “ pvi, vjq is directed and represents a link from vertex vi to vertex
vj . The weight function w : V ˆ V Ñ R` satisfies the following conditions :

‚ wpvi, vjq ą 0 if eij P E .
‚ wpvi, vjq “ 0 if eij R E .

We denote by |V| “ N , the cardinality of the vertex set V, that is the total number
of vertices in V. A weighted directed graph G can be entirely represented by its
weighted adjacency matrix W “ twiju1ďi,jďN P RNˆN` where wij “ wpvi, vjq are
the weights associated to the respective edges eij . We define respectively the out-
degree and the in-degree of a vertex vi P V by d`i “

řN
j“1 wij and d´i “

řN
j“1 wji.

For the sake of simplicity, we refer to the out-degree d`i of a vertex vi P V as its
degree that we denote by di.

A limitation of our framework is that it only applies to the case of weighted
graphs with nonnegative weights, that is W “ twiju1ďi,jďN P RNˆN` . Other ap-
proaches exist for the case of directed graphs with positive and negative weights
but they are not compatible with the one presented here [32, 9, 26].

We assume through the theoretical sections of this paper that the directed graph
G is strongly connected and the random walk operators are diagonalizable.
These two conditions are essential for our theoretical framework. If the directed
graph is not strongly connected, the method of building the Google matrix [29]
from the original adjacency matrix can be applied to ensure strong connectivity of
the resulting directed graph. This will be used in Section 7.2.

2.2. Graph signals. Let f : V ÞÑ C be a function defined on the vertex set V of a
given directed graph G. We define a graph signal f as a column vector representa-
tion of the function f applied at each node vi P V, that is

f “ rfpv1q, . . . , fpvN qs
J P CN .

We now define the space of functions defined over the vertices of a directed graph.

Definition 2.1 ([33]). Let G “ pV, Eq be a directed graph and µ : V ÞÑ r0,8q be a
function on V considered as a measure on V by setting µpUq “

ř

xPU µpxq, U Ă V.
For q P r1,8q, we denote `qpµ,Vq, the space of functions f : V Ñ C such that

}f}`qpµ,Vq “

$

’

&

’

%

ˆ

ř

xPV |fpxq|
qµpxq

˙1{q

ă 8, q P r1,8q.

max
xPV

|fpxq|µpxq ă 8, q “ 8.

We assume throughout this paper that the graph signals are defined in `2pV, µq
which is the Hilbert space of functions defined over the vertex set V of G endowed
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with the inner product
xf , gyµ “

ÿ

xPV
fpxqgpxqµpxq,

for all f , g P `2pV, µq and where fpxq denotes the complex conjugate of fpxq.

3. Linear filters on graphs

A linear operator on graph is represented by a matrix H P CNˆN that acts on
a graph signal input s P CN and produces a graph signal output s̃ P CN according
to the matrix vector product

s̃ “ Hs.

Within the framework of graph signal processing and inspired by conventional
signal processing, we are mainly interested in a type of graph filters that commutes
with a reference operator R, i.e. :

HR “ RH.

We define a graph filter H as a finite polynomial sum of a reference operator R,
that is

H “

T
ÿ

t“0

htR
t, ht P C, @t “ 0, . . . , T.

A graph filter H commutes with R. The following theorem establishes, under
a particular condition, that a graph filter that commutes with a given reference
operator can be expressed as a polynomial of the latter.

Theorem 3.1. Let R be a reference operator on a directed graph G. We assume
that R is diagonalizable. We also assume that the characteristic and minimum
polynomials of R are equal, i.e. pRpxq “ mRpxq. Then a graph filter H that
commutes with R is expressed as a polynomial finite sum of R

H “

T
ÿ

t“0

htR
t, ht P C, @t “ 0, . . . , T.

Theorem 3.1 indicates that if the filter H verifies the following three conditions:
(1) It commutes with a reference operator R.
(2) It is diagonalizable.
(3) Each of the eigenspaces is of dimension one.

then the filter can be expressed as a polynomial finite sum of R. We call a graph
filter linear "shift" invariant [9] (LSI) all operator polynomial of R. This notion
of invariance with respect to a reference operator on graphs seems rather restric-
tive insofar as many reference operators on graphs do not systematically admit
eigenspaces of dimension equal to 1 but eventually eigenspaces of dimension greater
than 1. Thus, it will always be possible to construct a filter on graph which is a
polynomial finite sum of a reference operator and therefore always invariant to its
reference operator.

A graph filter can also be characterized by its eigenvalues on each eigenspace
of R. Let tEjumj“1 denote the eigenspaces of R and tEju

m
j“1 the corresponding
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spectral projectors, characterized by EiEj “ δijEj . A graph filter with respect to
a diagonalizable operator R is a linear combination of the spectral projectors

(1) H “

m
ÿ

j“1

γjEj , γj P C, Ej P CNˆN , @j “ 1, . . . ,m,

where γj is the eigenvalue of H associated to eigenspace Ej .

4. Canonical operators on directed graphs

In this section, we introduce the fundamental linear operators and their proper-
ties in order to develop a harmonic analysis on directed graphs.

4.1. Random walk operators on graphs. We define a random walk on a di-
rected graph as follows.

Definition 4.1 ([11, 12]). A random walk on a strongly connected directed graph
G “ pV, E , wq is a homogeneous Markov chain X “ pXnqně0 not necessarily re-
versible with a finite state space V and whose transition probabilities are proportional
to the edges weights. In particular, the entries of P, written as ppx, yq,@x, y P V,
give the transition matrix associated to X on V, and they are :

ppx, yq “ PpXn`1 “ y|Xn “ xq.

Since its entries are probabilities, it follows that

ppx, yq ě 0 and
ÿ

yPV
ppx, yq “ 1, @x, y P V.

From a graph theory point of view, the transition matrix P P RNˆN is equal to

P “ D´1W,

where D “ diagtd1, . . . , dnu, the diagonal matrix of the out-degrees of the vertices
and W the weighted adjacency matrix. For any graph signal f , measure µ : V ÞÑ
r0,8q and states x, y P V, we adopt the following conventions [10]:

Pfpxq “
ÿ

yPV
ppx, yqfpyq,

µPpyq “
ÿ

xPV
µpxqppx, yq.

where f and µ are the vector representations of f and µ respectively. Let us
consider the transition matrix P P RNˆN and a delta Kronecker function at vertex
k P V, δk as a graph signal. If P acts on δk, that is Pδk, the mass at the vertex k
propagates on the parent node to the initial node, i.e. the mass propagates from the
node k to the node k´1. More generally, the random walk operator P behaves as a
local averaging on the children’s nodes when it acts on a function on its right hand
side. Given the importance of local averaging in signal processing, this suggests
that the random walk operator P may be natural as a core element of graph signal
processing. We define the irreducibility of a random walk on a graph as follows.

Definition 4.2. A random walk X is said to be irreducible if for any x, y P V, the
probability from x to reach y is strictly positive, in other words:

@x, y P V, Dm ă 8 : PpXn`m “ y|Xn “ xq ą 0.
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Irreducibility is equivalent to the strong connectivity of G, that is there is a
(directed) path from any vertex vi P V to any vertex vj P V.

Remark 4.1. In the case of undirected connected graphs, the associated random
walk is irreducible.

We define the periodicity of a random walk on a graph as follows.

Definition 4.3. Let X be a random walk on G. The period of a vertex x P V is:

%pxq “ gcdtn P N` : ppnqpx, xq ą 0u.

Thus starting in x, the Markov chain can return to x only at multiples of the
period %. The state x is aperiodic if %pxq “ 1 and periodic is %pxq ą 1. Having
defined the notions of irreducibility and periodicity, we are able to define the notion
of ergodicity of a random walk.

Definition 4.4. Let X be a random walk on G. The random walk X is ergodic if
it is irreducible and aperiodic.

We set out the proposition for the stationary distribution of an ergodic random
walk on G.

Proposition 4.1 ([77]). Let G be a directed graph with finite state space V. If a
random walk X with its transition matrix P is ergodic, i.e. irreducible and aperiodic,
the measures Pnpx, .q converge towards the row vector π “ rπpv1q, ¨ ¨ ¨ , πpvN qs P RN`
as nÑ8, i.e. the unique stationary distribution. In particular, πP “ π, with :

N
ÿ

i“1

πpviq “ 1, πpviq ě 0.

4.1.1. Reversibility. Given the discrete-time Markov chain X “ pXnqně0 and M ą

0 the finite time horizon, we define the time reversed Markov chain as X ˚ “ pX˚n q “
pXM´nq for n “ 0, ¨ ¨ ¨ ,M . We denote by P˚ “ tp˚px, yqux,yPV the transition
matrix associated with the Markov chain X ˚. It verifies

p˚px, yq “ PpX˚n`1 “ y|X˚n “ xq “
PpXM´n´1 “ yq

PpXM´n “ xq
ppy, xq, @x, y P V.

If we assume that X is ergodic with stationary distribution π, the time reversed
Markov chain X ˚ is also ergodic with stationary distribution π and the entries
p˚px, yq P P˚ are

p˚px, yq “
πpyq

πpxq
ppy, xq, @x, y P V

or in its transition matrix version

P˚ “ Π´1PJΠ,

where Π “ diagtπpv1q, ¨ ¨ ¨ , πpvN qu is the diagonal matrix of the stationary distri-
bution.

Let us introduce the function space `2pV, πq endowed with its inner product

xf , gyπ “
ÿ

xPV
fpxqgpxqπpxq.

In this space, P˚ is the adjoint of P, that is xf ,Pgyπ “ xP˚f , gyπ, for all f , g P
`2pV, πq.
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The ergodic random walk X with its transition matrix P is reversible if and only
if we have the following relation

P “ P˚.

Remark 4.2. Ergodic random walks on finite undirected graphs are reversible. That
means that the transition matrix associated to the time reversed random walk X ˚,
P˚ is equal to the transition matrix P associated to the original ergodic random
walk X namely P˚ “ P.

Remark 4.3. In the undirected setting, the stationary distribution π admits a
closed form expression. Indeed, on a given weighted undirected graph G “ pV, E , wq
represented by its symmetric adjacency matrix W “ twxyux,yPV P RNˆN` and the
degree of a vertex x P V is cpxq “

ř

yPV wxy. As a result, the associated random
walk is reversible with stationary distribution π defined by πpxq “ cpxq{cG where
cG “

ř

xPV cpxq. However, in the directed setting, the stationary distribution π does
not admit an analytical form. In order to calculate it, we use iterative methods
such as the power iteration method [89] or Markov Chain Monte Carlo(MCMC)
methods [90].

Remark 4.4. Ergodic random walks defined on directed graphs are typically non-
reversible. Nevertheless, reversible ergodic random walks may be constructed on
directed graphs by modifying the original non-reversible ergodic random walk. Such
a modification is discussed in section 4.2.2.

4.1.2. Eigenvalue distribution. By the Perron-Frobenius theorem [10], if the ran-
dom walk X is ergodic with a diagonalizable transition matrix P, the diagonaliza-
tion of P admits a simple dominant eigenvalue λmax “ 1. The other eigenvalues
tλ ‰ 1u satisfy |λ| ă 1, which implies that all eigenvalues different of λmax lie
within the unit circle.

4.2. Random walk generalizations. Given a random walk X on a directed graph
G with transition matrix P, we are able to build new types of random walks based
on P with various purposes.

4.2.1. Lazy random walks. The periodicity of a random walk X can be overcome by
considering the lazy random walk version of X . The transition matrix P̃ associated
to the lazy random walk X̃ , based upon P is expressed as

P̃ “
I`P

2
.

The lazy random walk can be seen as the random walk on a modified graph G̃ where
an edge from each vertex of G to itself is added with a weight equal to the vertex’s
degree in G. The lazy random walk X̃ is always aperiodic, hence when G is strongly
connected, X̃ is also ergodic with a stationary measure π verifying π “ πP̃ “ πP.

More generally, let us define P̃, the class of transition matrices associated with
generalized lazy random walks by

P̃ “
"

P̃γ : P̃γ “ p1´ γqP` γI

ˇ

ˇ

ˇ

ˇ

γ P r0, 1q

*

.

We note that the elements P̃γ P P̃ share the same eigenspaces as P, hence the
graph filters with respect to P̃ are also graph filters with respect to P.
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4.2.2. Additive reversibilization. From a non-reversible ergodic random walk X
with transition matrix P and unique stationary measure π, an additive reversibi-
lization of X can be constructed [13], denoted by X̄ , whose transition matrix is the
average between P and its time reversed P˚:

(2) P̄ “
P`P˚

2
.

X̄ is a reversible random walk with the same unique stationary distribution π.
More generally, let us define P̄ the class of convex combinations between the

random walk matrix P and its time reversed version P˚ as

(3) P̄ “
"

P̄α : P̄α “ p1´ αqP` αP˚
ˇ

ˇ

ˇ

ˇ

α P r0, 1s

*

.

We note that the elements P̄α P P share the same stationary distribution π but do
not have the same eigenspaces. We also note that all the random walks associated to
transition matrices P̄α P P̄ are non-reversible except for α “ 1{2, namely P̄1{2 “ P̄.

Remark 4.5. Given an ergodic random walk pX ,P, πq, we note that all lazy and
reversibilized versions, respectively P̃γ P P̃ and P̄α P P̄ share the same unique
stationary distribution π.

Remark 4.6. As a generalization of random walks, we may also consider the
multiplicative reversibilization of the ergodic non-reversible random walk P, that is
PP˚ which is also a reversible Markov chain with stationary distribution π. It is
useful e.g. for defining the convergence bounds of non-reversible Markov chains [13].

4.3. Laplacians on directed graphs. In this section, we introduce several defini-
tions of Laplacians on directed graphs as there exists in the undirected case [76, 75].

4.3.1. Normalized directed graph Laplacian. The Laplacian on a directed graph G
is expressed in terms of the transition matrix P of an ergodic random walk X on
G and is defined as follows.

Definition 4.5 ([2, 1]). Let G “ pV, Eq be a directed graph with |V| “ N . Let X
be an ergodic random walk on G with transition matrix P and unique stationary
distribution π. The normalized Laplacian on G is defined by

(4) L “ I´
Π1{2PΠ´1{2

`Π´1{2PJΠ1{2

2
,

where I is the identity matrix and Π “ diagtπpv1q, . . . , πpvN qu is the diagonal
matrix of the stationary distribution.

4.3.2. Random walk Laplacian. Another definition is the random walk Laplacian
LRW, defined as

(5) LRW “ I´ P̄.

The normalized Laplacian on directed graphs L is connected to the random walk
Laplacian through the following relation

L “ Π1{2LRWΠ´1{2.
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More generally, we define the random walk Laplacian on directed graphs associated
to a transition matrix P̄α P P̄ by

LRW,α “ I´
P̄α ` P̄˚α

2
.

In the following proposition, we show that the random walk Laplacian LRW,α is
equal to LRW.

Proposition 4.2. For any P̄α P P̄, we have

(6) LRW,α “ LRW, @α P r0, 1s.

Proof.

LRW,α “ I´
P̄α ` P̄˚α

2

“ I´
αP` p1´ αqP˚ ` αP˚ ` p1´ αqP

2

“ I´
αpP`P˚q ` p1´ αqpP`P˚q

2

“ I´
P`P˚

2
“ LRW. �

4.3.3. Combinatorial Laplacian. Finally, we also use the combinatorial Laplacian
L, defined as

(7) L “ Π´
ΠP`PJΠ

2
.

The latter is related to the random walk Laplacian through

L “ Π LRW.

Remark 4.7. As mentioned in remark 4.2, the transition matrix of a random
walk on an undirected graph is equal to the transition matrix of its time reversed
Markov chain. Furthermore, the stationary distribution π admits a closed form
as we mention in remark 4.3. As a result, the definitions eqs. (4), (5) and (7),
generalize the usual definitions for undirected graphs [34].

4.4. Canonical operators on directed graphs and Hilbert spaces. Let G “
pV, Eq be a directed graph, `2pVq and `2pV, πq be the Hilbert spaces associated
respectively with the counting measure and with the stationary measure π of the
ergodic random walk X on G. Let ϕ : `2pVq Ñ `2pV, πq be the linear mapping
defined as follows

(8) ϕ : f ÞÑ Π´1{2f , @f P `2pVq.

Definition 4.6 ([88]). Let H,K bet two Hilbert spaces. A linear transformation
V : H ÞÑ K is an isometry if and only if

}Vpx´ yq}H “ }x´ y}K, @x,y P H.

Proposition 4.3. The linear transformation ϕ : `2pVq ÞÑ `2pV, πq is an isometry.

Proof. Given g,h P `2pVq, and the linear transformation ϕ, we have

xϕpgq, ϕphqyπ “ xΠ
´1{2g,Π´1{2hyπ “ xg,hy. �
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Let us introduce the operator T P `2pVq defined as

(9) T “ Π1{2PΠ´1{2.

Definition 4.7 ([88]). Let H,K bet two Hilbert spaces. An invertible bounded linear
transformation V : H ÞÑ K intertwines an operator M P H to an operator S P K if

VM “ SV.

The operators M and S are called similar.

Proposition 4.4. The linear operator ϕ intertwines the operator T P `2pVq to the
operator P P `2pV, πq.

Proof.
ϕpTq “ Π´1{2T “ Π´1{2Π1{2PΠ´1{2

“ PΠ´1{2. �

Hence the operators T and P are similar with respect to ϕ. Identically, the
random walk Laplacian LRW and the normalized Laplacian L are also similar with
respect to ϕ.

5. Directed graph Fourier transform

Let P be the transition matrix of the ergodic random walk X . We assume P
diagonalizable, that is P admits an eigenvalue decomposition

P “ ΞΘΞ´1,

where Ξ “ rξ1, ¨ ¨ ¨ , ξN s is an eigenbasis with elements ξj , j “ 1, . . . , N and Θ “

diagtϑ1, ¨ ¨ ¨ , ϑNu is the corresponding diagonal eigenvalue matrix, non necessarily
distinct. Given a graph signal s, its directed graph Fourier transform denoted by
ŝ “ rŝ1, . . . , ŝN s is

ŝ “ Ξ´1s.

The values tŝjuNj“1 characterize the content of the graph signal s in the graph
Fourier domain.

The graph Fourier transform is not uniquely defined as it depends on the choice
of eigenbasis Ξ. First all eigenvectors ξj are defined up to a multiplicative scalar.
This can be easily resolved by normalizing the vectors and e.g. making the first
non-zero coefficient of each eigenvector real and positive. Second, whenever there
are eigenspaces with dimension greater than 1, there are infinite choices for the
orientations of the basis vectors within such eigenspaces. There is generally no
solution to this second issue. This implies that the values of individual Fourier
coefficients ŝj within such eigenspaces are rather meaningless. However, it only
impacts cases with eigenspaces of dimension greater than 1, which are not that
common in applications.

The inverse directed graph Fourier transform corresponding to an eigenbasis Ξ
is given by

s “ Ξŝ.

It reconstructs the original signal from its frequency contents by forming a linear
combination of eigenvectors weighted by their Fourier coefficients.

More generally, any P̄α P P̄ admits an eigenvalue decomposition

P̄α “ ΞαΘαΞ´1
α .
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Consequently, one can build an infinity of Fourier-type bases tΞαuαPr0,1s for func-
tions defined on directed graphs. Among these, the case α “ 1{2 is particularly
interesting insofar as P̄1{2 “ P̄ is self-adjoint in `2pV, πq. This implies that there is
an orthonormal eigenbasis Ξ1{2 which yields the following theorem.

Theorem 5.1 (Generalized Parseval’s Theorem). Given an eigenbasis Ξ1{2 of P̄

that is orthonormal in `2pV, πq, the corresponding Fourier transform is an isometric
operator from `2pV, πq to `2pt1, . . . , Nuq

(10) xΞ1{2x,Ξ1{2yyπ “ xx,yy, @x,y P `2pt1, . . . , Nuq.

Proof. ΞJ1{2ΠΞ1{2 “ I ùñ xΞ1{2x,Ξ1{2yyπ “ x
JΞJ1{2ΠΞ1{2y “ x

Jy “ xx,yy �

Another interesting property of P̄ is that its eigenspaces are the same as those
of the random walk Laplacian LRW (5).

Remark 5.1. In the undirected setting, a suitable Fourier-type basis is usually
characterized by an orthonormal eigenbasis of the combinatorial Laplacian L or its
normalized counterpart L [34]. These Fourier-type bases are both orthonormal for
`2pVq. Another less common choice is a Fourier-type basis based upon the ran-
dom walk Laplacian LRW “ I ´ P. As in the directed case with P̄, it leads to a
Fourier basis that is orthonormal in `2pV, πq, where π is proportional to the degrees
of the vertices (see remark 4.3). Some properties of the different definitions are
investigated in [75].

6. Fourier analysis on directed graphs

In this section, we propose a new analysis on directed graphs that is different
from the existing approaches on directed graphs [26, 30, 31, 65]. It is based on
the study of variations in the eigenvectors of the random walk operator. Before
discussing it in greater detail, we introduce the elements that allow us to study the
variation of signals on directed graphs.

6.1. Regularity of signals on graphs. The behavior of a graph signal over a di-
rected graph (or undirected) can be analyzed by measuring its regularity or smooth-
ness. We first define the length of the graph gradient at a given vertex as follows.

Definition 6.1 ([14]). Let G “ pV, Eq be a directed graph and ν : E Ñ r0,8q be a
positive measure defined on the edge set E. The length of the graph gradient of a
graph signal f at vertex x P V on an arbitrary graph G under the measure ν is

|∇fpxq| “
ˆ

1

2

ÿ

yPV,px,yqPE

|fpxq ´ fpyq|2νpx, yq

˙1{2

.

Intuitively, the length of the graph gradient measures the smoothness of a graph
signal around a given vertex. We now introduce the Dirichlet energy as a measure
of the smoothness of a signal over a strongly connected graph.

Definition 6.2 ([77]). The Dirichlet energy of a graph signal f associated to the
ergodic random walk X with transition matrix P and stationary distribution π on
a strongly connected graph G is
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D2
π,Ppfq “

1

2

ÿ

px,yqPE

πpxqppx, yq|fpxq ´ fpyq|2,(11)

“ xf ,LRWfyπ.

As we can appreciate, D2
π,Ppfq “ }|∇f |}22,ν where νpx, yq “ πpxqppx, yq where

ppx, yq is the px, yq entry of the transition matrix P and πpxq is the stationary
distribution at vertex x. For all P̄α P P̄, the associated Dirichlet energy is the
same:

D2
π,P̄α

pfq “ D2
π,Ppfq “ xf ,LRWfyπ.

We also introduce the Rayleigh quotient of a graph signal f associated to the
Dirichlet energy D2

π,Ppfq as

Rπ,Ppfq “
D2
π,Ppfq

}f}2π
.

For any P̄α P P̄, we have

Rπ,Ppfq “ Rπ,P̄αpfq.

6.2. Frequency analysis on directed graphs. The following proposition settles
a key connection between the regularity of the eigenvectors of the transition matrix
P of the ergodic random walk X and their associated eigenvalues.

Proposition 6.1. Let ξ P CN be an eigenvector of a transition matrix P of an
ergodic random walk X , with stationary distribution π, associated to the eigenvalue
ϑ P C. The Rayleigh quotient of ξ is given by

Rπ,Ppξq “ 1´Repϑq,

where Repϑq denotes the real part of ϑ P C.

Proof.

Rπ,Ppξq “
1

}ξ}2π

ˆ

xξ, ξyπ ´
1

2
xξ,Pξyπ ´

1

2
xξ,P˚ξyπ

˙

“
1

}ξ}2π

ˆ

}ξ}2π ´
ϑ` ϑ̄

2
}ξ}2π

˙

Rπ,Ppξq “
“

1´Repϑq
‰

. �

The latter proposition thus indicates that the smoothness of any eigenvector ξ
of P, as described by its Rayleigh quotient, is associated to the real part of its
respective eigenvalue ϑ. More generally, the smoothness of any eigenvector ξα of
P̄α P P̄ is characterized exactly in the same manner as in Proposition 6.1, i.e.

Rπ,Ppξαq “ 1´Repϑαq.

Therefore, we are now able to associate to each eigenvector ξ of P and generally
to each eigenvector ξα of a given P̄α P P̄, a value ω characterizing its variation that
we call frequency expressed intuitively as

(12) ω “ 1´Repϑq, ω P r0, 2s.
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Remark 6.1. In the undirected setting, the random walk is reversible such that the
Dirichlet energy associated to the random walk operator P is

Dπ,Ppfq “ xf ,LRWfyπ,

where LRW “ I ´ P. The random walk operator P is self-adjoint in `2pV, πq. As
a result, given an eigenvector ξ of P associated to eigenvalue ϑ, the associated
Rayleigh quotient is

Rπ,Ppξq “ 1´ ϑ.

Therefore, the variation of the eigenvectors of P is directly related to their respec-
tive eigenvalues. A similar result holds when the Fourier basis is based on the
combinatorial Laplacian L “ D´W thanks to the following identity

Dπ,Ppfq “ xf ,LRWfyπ “ xf ,Lfy.

As L is a symmetric semi-definite operator, its eigenvalues are nonnegative and real.
Hence the Rayleigh quotient of an eigenvector φ of L associated to an eigenvalue λ
is Rπ,Ppφq “ λ, which is the definition of frequency considered in [8].

6.2.1. On the content of subspaces associated to the random walk. The eigenval-
ues of an ergodic transition matrix P associated to a random walk on a strongly
connected directed graph G are either real or come as complex-conjugate pairs
pϑ, ϑ̄q P C2, ϑ “ α ` iβ. In the general case, a mono-frequency subspace can be
composed of eigenspaces corresponding to any number of pairs of complex-conjugate
eigenvalues and possibly one real eigenvalue. In the following, we examine how these
individual eigenspaces can be understood with respect to each other.

Let us first consider pairs of eigenspaces related to complex-conjugate eigenvalues
α ˘ iβ. Assuming that the eigenspaces have dimension equal to 1, the eigenvec-
tors can be chosen as complex-conjugate ξ, ξ̄ P CN . These eigenvectors share the
same frequency 1´ α and can be seen as a generalization of the Fourier modes at
frequencies ω and ´ω in one-dimensional classical Fourier analysis. One can also
define the corresponding real-valued Fourier modes

ξcos “
ξ ` ξ̄

2
, ξsin “

ξ ´ ξ̄

2i
,

which generalize the cosine and sine functions to graph signals. A graph mono-
frequency subspace spanned by only two complex-conjugate eigenvectors is thus
analogous to the subspace spanned by the cosine and sine functions at a given
frequency in classical Fourier analysis. As with the discrete Fourier transform,
there are also frequencies for which the frequency subspace has dimension equal to
one (the zero frequency and possibly the 1{2 frequency). The case of real eigenvalues
in graph signal processing can be seen as a generalization of these.

When the eigenspaces have dimension greater than 1, the situation is similar
to the multidimensional classical Fourier analysis setting where the frequency is a
vector ω “ rω1, . . . , ωns

J.
Let us now consider two eigenvalues with the same real part but different non-

conjugate imaginary parts. Continuing the analogy with classical Fourier analysis,
in two dimensions Fourier modes with a given frequency ω can be seen as linear
combinations of, say, vertical and horizontal Fourier modes with the same frequency,
which are two different orientations. This is illustrated in section 6.4.2 on the
directed toroidal graph.
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6.3. Random walk graph filters. In our theoretical framework, our reference
operator is the random walk operator P. Assuming that P can be diagonalized,
we can represent a graph filter H as a linear combination of the spectral projectors
tEϑku

m
k“1 associated with P, as defined at the eq. (1), i.e. if R “ P,

H “

m
ÿ

k“1

γkEϑk , γk P C, k “ 1, ¨ ¨ ¨ ,m.

In the previous section, we have defined the notion of mono-frequency random
walk subspace, that is the subspace spanned by the eigenvectors of P associated to
a given frequency obtained by studying the variation of these eigenvectors. Conse-
quently, we first define a random walk graph filter Hω as follows

Hω “
ÿ

ωPω

τωSω, τω P C.

where each τω is the response depending only on the frequency ω P ω and Sω is the
projector associated to the graph frequency ω P ω defined as

Sω “
ÿ

ϑ:1´Repϑq“ω

Eϑ

Let h : ω ÞÑ R (or C) be the frequency response associated to the frequency
ω P ω. We also are able to construct a random walk graph filter with frequency
response Hω as follows

(13) Hω “
ÿ

ωPω

hpωqSω, ω P r0, 2s.

This latter definition allows one to play with the frequency response by e.g.
shifting, contracting or dilating it along the frequency axis.

6.4. Fourier analysis on finite groups: a graph signal perspective. In order
to show the consistency of our Fourier analysis with respect to traditional signal
processing, we depict the directed counterparts of two well-known objects: the cycle
graph associated with the cyclic group pZ{nZq and the toroidal graph being is the
direct product of cyclic groups, i.e. T “ pZ{n1Zq ‘ ¨ ¨ ¨ ‘ pZ{nrZq [15].

6.4.1. Fourier analysis on the directed cycle graph. A directed cycle graph CN is a
graph with N vertices containing a single cycle through all the vertices and were
all the edges are directed in the same direction. The directed cycle graph CN is
represented by its adjacency matrix CN which is circulant

CN “

»

—

—

—

—

—

—

–

0 0 . . . 0 1
1 0 . . . 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

As the out-degree matrix of CN is D “ IN , we define a random walk X on CN
whose transition matrix is characterized by its adjacency matrix, namely P “ CN .
P is diagonalizable, i.e. P “ ΞΘΞ´1 where Θ “ diagtϑ1, ¨ ¨ ¨ , ϑNu P CNˆN is the
eigenvalue matrix where

ϑk “ e2πipk´1q{N , k “ 1, . . . , N.
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and Ξ “ rξ1, ¨ ¨ ¨ , ξN s P CNˆN is the discrete Fourier basis where

ξk “
1
?
N
r1, ϑ1

k, . . . , ϑ
N´1
k sJ k “ 1, ¨ ¨ ¨ , N.

.
The random walk X is irreducible and periodic. As our frequency analysis only

deals with ergodic random walks, we need X to be aperiodic. In order to overcome
the periodicity issue, we consider a γ-lazy random walk X̃ characterized by its
transition matrix P̃γ P P̃ defined at section 4.2.1. As a consequence, the Rayleigh
quotient associated to a given eigenvector ξk is given by

Rπ,Ppξkq “ p1´ γq

„

1´ cos

ˆ

2πpk ´ 1q

N

˙

“ ωk , k “ 1, ¨ ¨ ¨ , N.

Thus, the ordering of the frequencies tωkuNk“1 associated with the eigenvectors
tξku

N
k“1 by the Rayleigh quotient coincides exactly with the classical signal pro-

cessing approach.
By taking the limit γ Ñ 0, we could define frequencies for no-lazy random walks.

More generally, our Fourier analysis works perfectly with irreducible random walks
by taking the same kind of limit.

6.4.2. Fourier analysis on the directed toroidal graph. A directed toroidal graph
Tm,n is the Cartesian product of the directed cycle graphs Cm and Cn, namely
Tm,n “ Cm ˝ Cn. We introduce necessary definitions for the understanding of the
section.

Definition 6.3 ([18]). Let G “ pU , Eq and H “ pV,Fq be two graphs with respective
vertex sets U “ pu1, . . . , unq and V “ pv1, . . . , vmq. The Cartesian product of G and
H is the graph G ˝ H with vertex set U ˆ V in which two vertices x “ pui, vjq and
y “ pup, vqq are adjacent if and only if either ui “ up and pvj , vqq P F or vj “ vq
and pui, upq P E.

Definition 6.4 ( [18]). Let G “ pU , Eq and H “ pV,Fq be two graphs. The
adjacency matrix of the Cartesian product G ˝ H, denoted AG˝H is

AG˝H “ AG b I|W| ` I|V| bAH.

where b is the Kronecker product symbol.

Lemma 6.1. Suppose λ1, ¨ ¨ ¨ , λn are eigenvalues of AG and µ1, ¨ ¨ ¨ , µm are eigen-
values of AH. Then the eigenvalues of AG˝H are all λi ` µj for 1 ď i ď n and
1 ď j ď m. Moreover, if u and v are eigenvectors for AG and AH with eigenvalues
λ and µ respectively, then the vector w “ u b v is an eigenvector of AG˝H with
eigenvalue λ` µ.

Directed toroidal graph. Let Tm,n “ Cm ˝ Cn be the directed toroidal graph char-
acterized by its adjacency matrix ATm,n “ Cm b In ` Im b Cn. The eigenvalues
of Cm are λk “ e2iπpk´1q{m for k P v1,mw and the eigenvectors are denoted by
rφ1, . . . ,φms. Identically, the eigenvalues of Cn are µ` “ e2iπp`´1q{n for ` P v1, nw
and the eigenvectors are denoted by rψ1, . . . ,ψns. The directed toroidal graph
Tm,n is a directed 2-regular graph. Consequently, the out-degree matrix of Tm,n
is DTm,n “ 2Imˆn. We thus define a random walk X on Tm,n with a diagonaliz-
able transition matrix P “ D´1

Tm,nATm,n . We specify its spectral properties in the
following lemma.
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Figure 1. Eigenvalue distribution of the random walk matrix of a
directed toroidal graph T6,4. Eigenvalues on the dotted green line:
Repλgq “ ´0.25,@λg P Λg. Eigenvalues on the dotted orange line:
Repλoq “ 0.25,@λo P Λo.

Lemma 6.2. Let Tm,n be a directed toroidal graph and X be a random walk associ-
ated with the diagonalizable transition matrix P. The directed toroidal graph Tm,n
is a directed 2-regular graph. Consequently, the spectrum of P forms the set

σpPq “

"

ζi,j “
λi ` µj

2
, i P v1,mw, j P v1, nw

*

,

with the associated eigenvectors
"

φi bψj , i P v1,mw, j P v1, nw

*

.

As at the section 6.4.1, the associated random walk X is irreducible and periodic.
In order to overcome this periodicity issue, we consider a γ-lazy random walk X̃
with transition matrix P̃γ P P̃.

Figure X 1 illustrates the eigenvalue distribution of the transition matrix of a
directed toroidal graph. As we can appreciate, the distribution of eigenvalues is
remarkable. We denote by Λg, the set of eigenvalues located on the green dotted
line and Λo the set of eigenvalues located on the orange dotted line. Sets Λg,
and Λo, include respectively eigenvalues having the same real part and different
imaginary parts i.e. RepΛgq “ ´0.25 and RepΛoq “ 0.25. In order to illustrate the
insights discussed at the section 6.2.1, we exhibit on the figure 2 the two-dimensional
representation of some eigenvectors from the transition matrix of a directed toroidal
graph T54,36. Selected eigenvectors ξ28,49 and ξ28,50 have the same real part, that
is Repλpξ28,49qq “ Repλpξ28,50qq but different non conjugated imaginary parts, that
is Impλpξ28,49qq ‰ ˘Impλpξ28,50qq. Analytically, the Rayleigh quotients of the
selected eigenvectors are equal, as explained in section 6.2.1. As we can notice on
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Figure 2. Two-dimensional representation of the eigenvectors
ξ28,49 and ξ28,50 from the transition matrix of the directed toroidal
T54,36. The axis is the label of a vertex in Cm (resp. Cm) in the
x-direction (resp. y-direction).

figure 2, the selected eigenvectors have the orientation difference. This orientation
difference is associated to the influence of the imaginary parts of the eigenvalues of
the selected eigenvectors.

7. Applications

This section is devoted to illustrating our theoretical framework through exam-
ples of semi-supervised learning and signal modeling on directed graphs. It turns
our that in the following applications, we are able to work either in the Hilbert
space `2pVq or `2pV, πq where π is the unique stationary distribution of an ergodic
random walk. Furthermore, by the results obtained in the Section 4.4, we define
the isometry ϕ going from `2pVq to `2pV, πq. For the sake of simplicity, we will
always map signals living in `2pV, πq to `2pVq, so that we can work in `2pVq where
the scalar product coincides with the one between vectors in CN . For example, we
have measured a graph signal f in the real world. We decide in which space the
signal lives. We therefore make an arbitrary choice between the fact that the signal
lives in a space associated with the counting measure or in a space associated with
the stationary measure π of an ergodic random walk. If we assume that the signal
lives in `2pV, πq, we convert the signal into `2pVq using the application ϕ´1 defined
as

(14) ϕ´1 : f ÞÑ Π1{2f , @f P `2pV, πq.

We perform all the necessary operations in `2pVq. We then go back to the `2pV, πq
space in which the signal originally lived by using ϕ. In `2pVq, the operator T
defined in eq. (9) corresponds to the random walk operator and L is the operator
such that xf ,Lfy is the Dirichlet energy.
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7.1. Semi-supervised learning on directed graph via `2-regularization. We
discuss the semi-supervised learning problem on directed graphs with a regulariza-
tion term of type `2. The following problem aims to show the efficiency and rele-
vance of the Dirichlet energy defined at eq. (11) as a regularization term for signals
defined on directed graphs.

7.1.1. Definition of the problem. Let G “ pV, Eq be a strongly connected directed
graph where V “ pv1, . . . , vN q is the vertex set, E is the edge set and with cardinality
|V| “ N . The directed graph G is represented by its adjacency matrix W P RNˆN` .
Let X be the associated random walk on G. The random walk X is represented by
its random walk operator P P RNˆN` with unique stationary distribution π.

We also introduce Gsym the symmetrized version of the directed graph G. The
undirected graph Gsym is represented by its adjacency matrix Wsym “ pW `

WJq{2 P RNˆN` . Let Xsym be the associated random walk on Gsym. The ran-
dom walk Xsym is represented by its random walk operator Psym P RNˆN` with
unique stationary distribution πsym.

Let y : V Ñ t´1, 1u be the function defined on the vertex set V. From the
function y, we obtain the graph signal y defined as follows

y “ rypv1q, . . . , ypvN qs
J.

Given the values ypvkqt1ďkďNu on only a subset of labeled vertices U Ă V, the
aim is to estimate the labels of the remaining unlabeled vertices. This is the semi-
supervised learning problem on graphs [27, 39, 91]. We introduce the formulation
of the problem in the next section.

7.1.2. Resolution of the problem. The problem of semi-supervised learning on graphs
is formulated as follows

(15) argmin
f

 

c}Mlpf ´ yq}
2 ` %1}Muf}

2 ` %2Spfq
(

, c, %1, %2 ą 0.

The term }Mlpf´yq}
2 is the labeled data fidelity term with Ml “ diagtm1, . . . ,mNu

a diagonal matrix where mi “ 1viPU , for all i “ 1 . . . , N (hence 0 on vertices with
unknown labels). In the second term, }Muf}

2 appears Mu defined as Mu “

IN ´Ml and the third term, Spfq is the variational regularization term defined as

Spfq “ xf ,Xfy, X P RNˆN .

The semi-supervised learning on graphs problem is formulated in the same man-
ner for the directed graph G or its symmetrized version Gsym, except that the
variational regularization term Spfq differs. We propose to compare three methods
for the directed case and its symmetrized one.
Semi-supervised learning on G.

Method 1: For this method, we use a modification of (15), previously investigated
by [27]. If the graph signal y P `2pVq, the optimization problem is

(16) argmin
f

 

c}Mlpf ´ yq}
2 ` c}Muf}

2 ` %2xf ,Lfy
(

, c, %2 ą 0.

with L the directed normalized Laplacian defined at eq. (4). The term
xf ,Lfy is the Dirichlet energy in `2pVq.
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Method 2: For this method, we also use the formulation (16), except that the graph
signal y P `2pV, πq. Hence, we define ỹ P `2pVq as follows

ỹ “ ϕ´1pyq “ Π1{2y, y P `2pV, πq.

The optimization problem is therefore

(17) argmin
f̃

 

c}Mlpf̃ ´ ỹq}
2 ` c}Muf̃}

2 ` %2xf̃ ,Lf̃y
(

, c, %2 ą 0.

Equation (17) is the same as eq. (16) except for y which is now ỹ. We
can rewrite the optimization problem (17) as follows

(18) argmin
f

 

c}Mlpf ´ yq}
2
π ` c}Muf}

2
π ` %2xf ,LRWfyπ

(

, c, %2 ą 0.

with LRW the random walk Laplacian on directed graphs defined at Eq. (5).
The term xf ,LRWfyπ is the Dirichlet energy defined at Eq. (11).

Method 3: In the framework of "Discrete Signal Processing on Graphs" [9, 26], the
semi-supervised learning problem for directed graphs is formulated as fol-
lows

(19) argmin
f

 

c}Mlpf ´ yq}
2 ` %2}f ´Wnormf}22

(

, c, %2 ą 0,

with Wnorm, a normalized version of the the adjacency matrix W so that
its spectral norm is equal to one.

Semi-supervised learning on Gsym. We use the same methods for the semi su-
pervised learning on G.

Method 1: If the graph signal y P `2pVq, the optimization problem is

(20) argmin
f

 

c}Mlpf ´ yq}
2 ` c}Muf}

2 ` %2xf ,Lsymfy
(

, c, %2 ą 0.

with Lsym the normalized Laplacian defined as

Lsym “ I´Π1{2
symPsymΠ´1{2

sym , Πsym “ diagtπsympv1q, . . . , πsympvN qu.

Method 2: The optimization problem is

(21) argmin
f̃

 

c}Mlpf̃ ´ ỹq}
2 ` c}Muf̃}

2 ` %2xf̃ ,Lsymf̃y
(

, c, %2 ą 0.

We can rewrite the optimization problem (21) as follows

(22) argmin
f

 

c}Mlpf ´ yq}
2
π ` c}Muf}

2
π ` %2xf ,LRW,symfyπ

(

, c, %2 ą 0.

with LRW,sym the random walk Laplacian defined as

LRW,sym “ I´Psym.

7.1.3. Solution of the problem. The problem (15) is quadratic and convex and there-
fore admits a closed form solution.
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Semi-supervised learning on G.
Method 1: The solution of the optimization problem (16) is

(23) f˚ “ sign
“

pI` γLq´1Mly
‰

, γ “ %2{c, f˚ P `2pVq.

Method 2: The solution of the optimization problem (17) is

(24) f˚ “ sign
“

pI` γLRWq
´1Mly

‰

, γ “ %2{c, f˚ P `2pV, πq.

Method 3: The solution of the optimization problem (19) is

f˚ “ sign
“`

Ml ` γR´1
M

˘

y
‰

, γ “ %2{c, f˚ P `2pVq.

with RM “ pI´WnormqJpI´Wnormq.
Semi-supervised learning on Gsym.

Method 1: The solution of the optimization problem (20) is

(25) f˚ “ sign
“

pI` γLsymq
´1Mly

‰

, γ “ %2{c, f˚ P `2pVq.

Method 2: The solution of the optimization problem (21) is

(26) f˚ “ sign
“

pI` γLRW,symq
´1Mly

‰

, γ “ %2{c, f˚ P `2pV, πsymq.

We summarize the different methods in Table 1.

Method G Gsym

Method 1 L Lsym

Method 2 LRW LRW,sym

Method 3 RM [9]

Table 1. Table of the different operators associated with the semi-
supervised learning methods according to G and Gsym.

7.1.4. Experiments. Let us consider the dataset of the political blogs of the 2004 US
presidential campaign [28]. The dataset consists of 1224 political blogs where each
political blog is associated with a political orientation, either republican or demo-
crat. This dataset is modeled by a graph G “ pV, Eq where each vertex v P V is
associated to a blog and an edge between two vertices tvi, vju indicates the presence
of hyperlinks from the blog associated to the vertex vi to the vertex vj . The polit-
ical orientations of blogs are modeled by a graph signal f0 “ tf0pv1q, ¨ ¨ ¨ , f0pvN qu
where f0pviq P O where each vertex is associated with a label belongs to the set
O “ t´1, 1u characterizing its political orientation, the political orientation as-
sociated with Democrats being “+1" and the political orientation associated with
Republicans being “-1". The directed graph G associated to the political blogs is not
strongly connected. Our theoretical framework leads us to only consider strongly
connected graphs. As a result, we consider the largest strongly connected subgraph
of G, denoted by G1 “ pV 1, E 1q which is made up of |V 1| “ N 1 “ 793 vertices (hence
roughly 65% of the vertex set V) and its associated graph signal f 10. The respec-
tive performances of the approaches eqs. (16), (18) and (19) and their symmetrized
counterparts eqs. (20) and (22) are compared in fig. 3.
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Figure 3. Semi-supervised learning on G1 of the political blogs
of the 2004 US presidential campaign. The notations Lnorm and
Lnorm,sym correspond respectively to L and Lsym .

Numerical simulations. Figure 3 displays the performance of the semi-supervised
approaches eqs. (16), (18) to (20) and (22). The performance rate is an average of
500 realizations calculated by determining the parameter γ P r0, 10s on the training
set giving the best performance rate.

Firstly, we remark that for all proportions of known labels, the performance
rates of semi supervised approaches based on L,LRW and its symmetrized counter-
parts Lsym,LRW,sym are better than the performance rates of the semi-supervised
approach based on RM . On the top left of fig. 3, we compare the semi-supervised
approaches involving the operators L,LRW and RM . The performance rate of the
semi-supervised approach associated with L is the best compared to the approaches
involving LRW,RM for low rates of known labels. Furthermore, the performance
rate approach associated with L is slightly better than the approach involving
LRW. On the top right of fig. 3, we compare the semi-supervised approaches in-
volving the operators Lsym,LRW,sym and RM . Similarly the top left figure, the
performance rate of the semi-supervised approach associated with Lsym is slightly
better than the approach involving LRW. On the bottom left of fig. 3, we compare
the semi-supervised approaches involving the operators LRW,LRW,sym and RM .
The performance rates between the approach involving LRW and LRW,sym are quite
identical for any proportion of known labels as well as to the bottom right of fig. 3
comparing the semi-supervised approaches involving LRW,LRW,sym and RM . The
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comparison of performance rates of the semi-supervised approaches involving the
different operators listed in the table 1 associated with this example leads us to the
following conclusions :

‚ The semi supervised learning approaches involving Dirichlet energies based
upon L and LRW (and their symmetrized counterparts) yields better per-
formance rates compared to the approach proposed by Sandryhaila and
Moura [9] based upon RM . Consequently, semi-supervised learning ap-
proaches on directed graphs with Dirichlet energies based on the random
walk operator seem more appropriate.

‚ The Hilbert space where we consider the graph signal seems to have an
influence on the performance rates of the semi-supervised problem. Here,
considering the graph signal y belongs to `2pVq, or equivalently consider-
ing the operator L in the regularization term yields to better performance
than considering the graph signal y belonging to `2pV, πq or equivalently
considering the operator LRW in the regularization term.

7.2. Signal modeling on directed graphs via filtering. In this section, we
consider a way to model the relationships between the values of a graph signal using
a graph filter. The model is expressed as a graph filter that takes some values from
the graph signal and reconstructs the other values. A possible application of such a
model could be the lossy compression of the signal, where knowing only the graph,
the coefficients of the graph filter and a few signal values enable the reconstruction
of the whole signal. The major difference with the previous application is that we
assume the whole graph signal known to learn the filter.

7.2.1. Problem formulation. Let G “ pV, Eq be a directed graph with cardinality
|V| “ N and µ : V Ñ R` a positive measure. The directed graph G is characterized
by its adjacency matrix W P RNˆN . Given a random graph signal y, we wish to
determine the missing values of the signal by using a graph filter H expressed as a
polynomial finite sum of a reference operator R, that is

(27) H “

K
ÿ

k“0

θkR
k, θk P R, k “ 0, ¨ ¨ ¨ ,K.

The whole graph signal f0 P `
2pV, µq is defined as

f0 “ rf0pv1q, . . . , f0pvN qs
J.

The random signal y “ ry1, . . . , yN s
J is a multivariate random variable indexed

on the vertex set V. The random variables yj , j “ 1, . . . , N can be expressed as
yj “ εjf0pvjq, where the εj are assumed independent and Bernoulli distributed
with parameters δj : εj „ Berpδjq. The random variable ε̄ defined as

(28) p “
1

N

N
ÿ

i“1

εi,

is the proportion of known values of f0, all collected in y. This signal y can be
viewed as a random sampling of the graph signal f0. The optimization problem is
the following

(29) argmin
θ“tθkuKk“0PRK`1

E

„

}f0 ´

K
ÿ

k“0

θkR
ky}2µ



,
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7.2.2. Solution of the problem. The solution of the problem (29) is the following

(30) pθ “ Z´1MQJf0,

where M “ diagtµpv1q, ¨ ¨ ¨ , µpvN qu is the diagonal matrix of the associated measure
µ, Z the matrix where each entry Zk` P Z is expressed as

Zk` “ Tr
`

rRksJMR`EpyyJq
˘

, @tk, `u P v0,Kw2,

and Q “ rq0, ¨ ¨ ¨ , qKs P RNˆpK`1q where each vector qj is

qj “ RjEpyq, @j P v0,Kw.

Consequently, the resulting graph filter pH is

pH “

K
ÿ

k“0

θ̂kR
k, θ̂k P R, k “ 0, ¨ ¨ ¨ ,K.

7.2.3. An exploration of modeling accuracy with different graph operators. The re-
construction quality using the previous approach depends on several factors: the
choice of reference operator R, the order of the filter K and the random sampling
strategy defined by the Bernoulli parameters δk. Here, we evaluate primarily the in-
fluence of R and compare two possible sampling strategies. As an example, we also
consider the dataset of the political blogs of the 2004 US presidential campaign [28],
described in section 7.1.4.

We consider the directed graph G1. The directed graph G1 is represented by its
adjacency matrix W. On G1, we consider the following operators

‚ Wnorm the normalized version of the adjacency matrix W whose norm is
equal to one.

‚ The random walk operator P associated with an ergodic random walk X
with unique stationary distribution π.

‚ P̄ the additive reversibilization of P.
‚ T “ Π1{2PΠ´1{2 the operator similar to P.
‚ T̄ “ Π1{2P̄Π´1{2 the operator similar to P̄.
‚ P̄α P P̄ with P̄ “

 

P̄α : P̄α “ p1´ αqP` αP˚
ˇ

ˇα P r0, 1s
(

‚ T̄α P T̄ with T̄ “
 

T̄α : T̄α “ p1 ´ αqΠ1{2PΠ´1{2
` αΠ1{2P˚Π´1{2

ˇ

ˇα P

r0, 1s
(

We also consider G1sym, the symmetrized version of G1. The undirected graph
G1sym is represented by its adjacency matrix Wsym “ pW `WJq{2. On G1sym, we
define the following operators

‚ Wnorm
sym the normalized version of the adjacency matrix Wsym whose the

norm is equal to one.
‚ The random walk operator Psym corresponding to the ergodic random walk
Xsym with stationary distribution πsym.

‚ Tsym “ Π1{2
symPsymΠ´1{2

sym the operator similar to Psym.
Finally, we consider G, the full graph. The directed graph G is represented by

its adjacency matrix W. The graph G is not strongly connected. Consequently,
we can not build directly a random walk operator on G. We need to deal with its
property of not being strongly connected, as required by our framework.
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Indeed, some vertices in G have an out-degree equal to zero and we cannot
create a transition matrix directly from the adjacency matrix. To overcome this
problem, we propose two approaches that make the graph strongly connected and
the associated random walk ergodic:

Approach 1: Rank-one perturbation: from the original adjacency matrix W, we con-
struct a new adjacency matrix Wε as follows

Wε “ W ` εJ,

where J “ 11J{N is a rank-one matrix and ε is small. The weak perturba-
tion of the adjacency matrix W by the matrix J ensures that the random
walk on G is ergodic with stationary measure πε and its associated transition
matrix Pε is well-defined. For our experiments, we choose ε “ 10´4.

Approach 2: Construction of the Google matrix of G [29]. This is achieved in two steps.
Firstly, we construct an adjacency matrix W̃ from W by adding a weight
one from all dangling nodes, that is nodes with no out-edges towards all
the nodes in the graph. From W̃ we can construct the transition matrix S.
Secondly, we define the Google matrix PG as

PG “ p1´ γqS` γJ.

where γ “ 0.85 [29].

We will compare the reconstruction accuracy using a proportion of correctly
reconstructed labels obtained via

f̂ “ signp pHyq.

Subproblem 1. We solve the problem (29) by learning a polynomial graph filter
with K “ 10 on G1 and G1sym We consider as reference operators the ones listed
on G1 and G1sym. In this subproblem, the random variables yj , j “ 1, . . . , N 1 are
distributed according to one of the two following cases

‚ Random variables yj “ εjf
1
0pvjq where εj „ Berppq with p the proportion

of known labels.
‚ Random variables yj “ εjf

1
0pvjq where εj „ Berpαπjq, such that

ř

j Epεjq “
pN 1 with p the proportion of known labels.

The proportions of correctly reconstructed labels are measured for various p
values using 500 realizations of y to estimate its mean and covariance used in the
solution (30).

We summarize the different cases in table 2.

Case Distribution y Reference operators

Case 1 yj “ εjf
1
0pvjq, εj „ Berppq Wnorm,P, P̄,T, T̄, Wnorm

sym ,Psym,Tsym

Case 2 yj “ εjf
1
0pvjq, εj „ Berpαπjq,

ř

j Epεjq “ pN 1 Wnorm,P, P̄,T, T̄,Wnorm
sym ,Psym,Tsym

Table 2. Summary table of the different cases of the subproblem 1.
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Figure 4. (Subproblem 1, Case 1) Left: Reconstruction of the
graph signal f 10 on G1. Right: Reconstruction of the graph signal
f 10 on G1sym.The notation Pbar (resp. Tbar) correspond to P̄

(resp.T̄).

Numerical simulations: Case 1. We evaluate the reconstruction performance
of the graph signal f 10 in figure 4. For all proportions p of known labels, the
average rate of correctly reconstructed labels in the graph signal f 10 from a learned
polynomial graph filter of P or P̄ is significantly better than the one based on
a learned polynomial graph filter of Wnorm in the case where we consider either
the subgraph G1 or its symmetrized version G1sym. Furthermore, the reconstruction
performance using a filter based on P is slightly better than using a filter based on
P̄. The reconstruction performance using a filter based on T is the best. For small
proportions p of known labels, the average rate of correctly reconstructed labels
from a learned polynomial graph filter of T̄ is slightly better. We also notice that
the reconstruction performance using a filter based on Tsym is identical to using a
filter based on Psym for all proportions p of known labels.

Figure 5. (Subproblem 1, Case 2) Left: Reconstruction of the
graph signal f 10 on the subgraph G1. Right: Reconstruction of
the graph signal f 10 on G1sym. The notation Pbar (resp. Tbar)
correspond to P̄ (resp.T̄).
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Numerical simulations: Case 2. The reconstruction performance is shown in
figure 5. We observe a significantly better performance using a filter based on P or
P̄ than based on Wnorm in the case where we consider either the subgraph G1 or its
symmetrized version G1sym and a slightly better performance using P rather than P̄.
For all proportions p of known labels, the average rates of correctly reconstructed
labels are identical using either a filter based on T or T̄ are better than using a
filter based on P or P̄. We notice the reconstruction performance based on Wnorm

has a large variability and even decreases for larger p.

Case 1 vs. Case 2. The reconstruction performance using a filter based on P or
P̄ is slightly better when the samples in y are selected according to a distribution
proportional to the stationary distribution π (case 2) than when the distribution
is uniform (case 1). It is also the case by using a filter based on T or T̄. This
is expected as vertices with larger πk values correspond to better-connected blogs,
which are likely to have an influence on a larger number of other blogs. Although
the reconstruction performance using a filter based on Wnorm is better in case 2
than in case 1, the large variability and the poorer performance at large p in case 2
suggest that these filters provide generally poorer models of the signal. The better
reconstruction performance using a filter based on T or T̄ with respect to using a
filter based on P or P̄ suggest that the graph signal seems more suitable to live in
`2pVq than `2pV, πq.

Subproblem 2. Here we consider the same problem (29) as in the previous sec-
tion but now compare the performance using reference operators P̄α P P̄ and their
equivalents T̄α “ Π1{2P̄αΠ´1{2 The random variables yj , j “ 1, . . . , N 1 are dis-
tributed according to one of the two following cases:

‚ Random variables yj “ εjf
1
0pvjq where εj „ Berppq with p the proportion

of known labels.
‚ Random variables yj “ εjf

1
0pvjq where εj „ Berpαπjq, such that

ř

j Epεjq “
pN 1 with p the proportion of known labels.

We summarize the different cases in table 3.

Case Distribution y Reference operators

Case 1 yj “ εjf
1
0pvjq, εj „ Berppq P̄α P P̄, T̄α P T̄

Case 2 yj “ εjf
1
0pvjq, εj „ Berpαπjq,

ř

j Epεjq “ pN 1 P̄α P P̄, T̄α P T̄

Table 3. Summary table of the different cases of the subproblem 2.

Numerical simulations: Case 1. We evaluate the reconstruction performance of
f 10 using filters either based on P̄α, α P r0, 1s at the top of fig. 6 or either based on
T̄α, α P r0, 1s at the bottom of fig. 6. We first consider the top of fig. 6. For small
proportions of p of known labels, we notice that the reconstruction performance
using a filter based on P̄α, α » 0.2 is the best while for higher proportions p, the
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Figure 6. (Subproblem 2, Case 1) Up: Reconstruction of the
graph signal f 10 on G1, P̄α P P̄. Down: Reconstruction of the
graph signal f 10 on G1, T̄α P T̄ .

reconstruction performance using a filter based on P̄α, α » 0.3 is the best. We
notice poorer performance overall when α increases from α “ 0.5 to α “ 1. At the
bottom of fig. 6, the reconstruction performances using a filter based on T̄α, α » 0.2
are the best except for the rate p “ 0.01. We notice poorer performance overall
when α increases from α “ 0.5 to α “ 1.

For all proportions p of known labels, the reconstruction performance are slightly
better overall if we consider filters based on T̄α, α P r0, 1s than filters based on
P̄α, α P r0, 1s. That means the problem is more adapted when the graph signal f 10
is in `2pVq than f 10 is in `2pV, πq. Furthermore, the study of this case suggests that,
for this signal, graph filters P̄α perform better when the convex combination of P
and P˚ involves more the random walk P, i.e. α P p0, 0.5q, than the random P˚,
i.e. α P p0.5, 1q.

Numerical simulations: Case 2. We evaluate the reconstruction performance
of f 10 using filters either based on P̄α, α P r0, 1s at the top of fig. 7 or either based
on T̄α, α P r0, 1s at the bottom of fig. 7. Let us consider the top of fig. 7. We
notice that the reconstruction performances using a filter based on P̄α, α » 0.3
are the best except for the rates p “ t0.01, 0.02u. We notice poorer performance
overall when α increases from α “ 0.5 to α “ 1. This suggests that, for this signal,
graph filters based on P̄α perform better when the convex combination of P and
P˚ involves more the forward random walk P, i.e. α P p0, 0.5q, than the backward
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Figure 7. (Subproblem 2, case 2) Up: Reconstruction of the
graph signal f 10 on G1, P̄α P P̄. Down: Reconstruction of the
graph signal f 10 on G1, T̄α P T̄ .

random walk P˚, i.e. α P p0.5, 1q. At the bottom of fig. 7, the reconstruction
performances using a filter based on T̄α, α » 0.3 are the best for all proportions
p of known labels. Similarly to the previous cases, we notice poorer performance
overall when α increases from α “ 0.5 to α “ 1.

Firstly, the reconstruction performance is better using filters based on P̄α than
T̄α. That means the problem is more suitable for graph signal f 10 P `2pV, πq is
slightly better than performance with respect to the graph signal belonging to
`2pVq when the samples in y are selected from a distribution proportional to the
stationary distribution π than when the distribution is uniform. Conversely, the
problem is more suitable for graph signal f 10 is `2pVq than `2pV, πq when the distri-
bution in y is uniform while the samples in y are selected according to a distribution
proportional to the stationary distribution π. As a result, the distribution of the
graph signal has an influence in the reconstruction performance through the use of
learned filters based either on P̄α or T̄α.

Subproblem 3. We now consider the same problem (29) on the whole graph
G. In this subproblem, the random variables yj , j “ 1 . . . , N are distributed as
yj “ εjf0pvjq, εj „ Berppq. For each proportion of known labels p, the good re-
construction rates are derived by averaging 500 graph signals realizations of y. We
summarize the following case in the table 4.



HARMONIC ANALYSIS ON DIRECTED GRAPHS 31

Case Distribution y Reference operators

Case 1 yj “ εjf
1
0pvjq, εj „ Berppq Wnorm,Pε,PG, P̄ε, P̄G,Tε,TG, T̄ε, T̄G

Table 4. Summary table of the case of the subproblem 3.
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Figure 8. (Subproblem 3, Case 1) Reconstruction of the graph
signal f0 on G.The notation Pbar

ε (resp. Pbar
G , Tbar

G , Tbar
ε ) corre-

sponds to P̄ε (resp. P̄G, T̄G, T̄ε).

Numerical simulations. The reconstruction performance is shown in fig. 8. For
all p values, the reconstruction performance using filters based on Wnorm is sig-
nificantly worse than with all other reference operators. Compared to the other
reference operators, Wnorm is the only one that can be used without modifying the
graph to make it strongly connected. Still, its performance is always worse.

Among the other reference operators, we notice a clearly better performance gen-
erally when using the reversibilizations P̄ε and P̄G compared to the non-reversible
random walks Pε and PG. Furthermore, the best reconstruction performance is
obtained using a filter based on T̄G and the reconstruction performance using a
filter based on T̄ε is identical to T̄G for higher rate of known labels. This differs
from the results on G1 where both would perform similarly.

Finally, the reconstruction performance does not depend as much on the ap-
proach we use to make the graph strongly connected. It seems though that the
Google approach slightly outperforms the rank-one approach, both for the non-
reversible random walks and their reversibilizations.

Subproblem 4. Here we consider the same problem (29) as in the previous section
but now compare the performance using reference operators P̄α P P̄ and their
respective equivalents T̄α “ Π1{2P̄αΠ´1{2. The random walk operator is built from
the Google matrix approach (Approach 1). The random variables yj , j “ 1 . . . , N
are distributed as yj “ εjf0pvjq, εj „ Berppq. We summarize the case in the table 5.
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Figure 9. (Subproblem 4, case 1) Up: Reconstruction of the
graph signal f0 on G, P̄α P P̄. Down: Reconstruction of the
graph signal f0 on G, T̄α P T̄ .

Case Distribution y Reference operators

Case 1 yj “ εjf0pvjq, εj „ Berppq P̄α P P̄, T̄α P T̄

Table 5. Table of the case of the subproblem 4.

Numerical simulations: Case 1. We evaluate the reconstruction performance of
f 10 using filters either based on P̄α, α P r0, 1s at the top of the fig. 9 or either based
on T̄α, α P r0, 1s at the bottom of the fig. 9. For all proportions p of known labels,
the reconstruction performances using a filter based on P̄α, α » 0.6 are the best.
We also notice that the reconstruction performance using a filter with α P t0.7, 0.8u
are better than α » 0.5. This suggests that, for this signal, graph filters based on
P̄α perform better when the convex combination of P and P˚ involves more the
random walk P˚, i.e. α P r0.6, 0.8s, than the random walk P, i.e. α P r0.1, 0.5s.
At the bottom of fig. 9, the reconstruction performances using a filter based on
T̄α, α » 0.5 are the best, for all proportions p of known labels. We notice poorer
performance overall when α increases from α “ 0.5 to α “ 1. For all proportions
p of known labels, the reconstruction performance are better overall if the graph
signal f0 is in `2pVq than f0 is in `2pV, πq. In other words, the reconstruction
performance using filters based on T̄α is better than using filters based on P̄α.
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To summarize :
‚ The Hilbert space where we consider the graph signal or the distribution
of the sampled graph signal has an influence on the performance rates
of the reconstruction of the graph signal. In the example discussed in
the current section, we obtain better performances when we consider the
Hilbert space of the graph signals associated to the measure corresponding
to the sampling probability.

‚ The construction of graph filters based on the random walk operator yields
better performance rates than filters based on the adjacency matrix.

‚ The choice of the parameter α in the convex combination between P and
P˚ has an influence on the performance rates. In the example discussed in
the current section, the optimal convex combination P and P˚ (resp. T
and T˚) is rather forward than backward with one exception.

8. Multi-resolution analyses on directed graphs

In the previous sections, we proposed a Fourier like basis on directed graphs,
as the set of random walk’s eigenvectors and determine a frequency analysis by
studying the smoothness of the random walk’s eigenvectors. We are thus able
to construct multiresolution analyses of functions over directed graphs. In a first
instance, we propose wavelet frames made of analysis and synthesis graph filter
banks. This multi-scale construction is closely related to the diffusion polynomial
frames construction [19] and spectral graph wavelets [20]. In a second instance, we
propose a critically sampled wavelet construction on directed graphs generalizing
the diffusion wavelets framework [21]. In our theoretical constructions, we propose
to work in the `2pVq space. We use the linear transformation ϕ defined in eq. (8)
to go into the `2pV, πq space.

8.1. Redundant wavelet transform on directed graphs. In this section, we
propose a redundant wavelet transform on directed graphs. We follow the con-
struction of spectral wavelets on undirected graphs [20] and polynomial diffusion
frames [19]. The novelty is the construction of filters designed in the frequency do-
main via a frequency response function as a linear combination of projectors onto
the associated mono-frequency random walk subspaces. We introduce the necessary
elements for the construction of redundant wavelets on directed graphs.

8.1.1. Theoretical framework. Let G “ pV, Eq be a strongly connected directed
graph with cardinality |V| “ N . The directed graph G is characterized by its
adjacency matrix W P RNˆN` . On G, we defined a random walk X characterized
by its transition matrix P “ D´1W P RNˆN` . The X is ergodic with stationary
distribution π. We introduce T “ Π1{2PΠ´1{2

P `2pVq, the operator similar to P.
We assume T diagonalizable. We define a low-pass operator as follows.

Definition 8.1. A low pass operator at dilation t, HG
t on a strongly connected

directed graph G is defined by

HG
t “

p
ÿ

`“1

hptω`qS`, t P N.

with h : r0, 2s Ñ R, a function giving a low-pass frequency response and tS`u
p
`“1,

the set of mono-frequency random walk projectors associated to the mono-frequency
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random walk subspaces tS`u
p
`“1 of T. The scaling function at dilation t and trans-

lation y is denoted by
hGt,y “ HG

t δy

where δy is the Kronecker delta function at the vertex y P V.

We define a bandpass operator as follows.

Definition 8.2. A band pass operator at dilation t, GG
t on a strongly connected

directed graph G is defined as

GG
t “

p
ÿ

`“1

gptω`qS`, t P N.

with g : r0, 2s ÞÑ R, a function giving a band-pass frequency response and tS`u
p
`“1,

the set of mono-frequency random walk projectors associated to the mono-frequency
random walk subspaces tS`u

p
`“1 of T. The wavelet function at dilation t and trans-

lation y is denoted by
gGt,y “ GG

t δy,

where δy is the Kronecker delta function at the vertex y P V.

Having defined the low-pass and band-pass operators on directed graphs, we are
able to build analysis and synthesis filter banks on directed graphs.

Definition 8.3. We define a bank of synthesis filters K as the set of a low-pass
filter at dilation tJ , HG

tJ and a series of band-pass filters at increasing dilations
ttju

J
j“1, tGtju

J
j“1 :

K “ tHG
tJ ,G

G
t1 , . . . ,G

G
tJ u.

Definition 8.4. We define a bank of analysis filters K̃ as the set of a filter at
dilation tJ , H̃G

tJ and a series of filters at increasing dilations ttjuJj“1, tG̃tju
J
j“1 :

K̃ “ tH̃G
tJ , G̃

G
t1 , . . . , G̃

G
tJ u,

where

H̃G
tJ “

p
ÿ

`“1

h̃ptω`qS` P RNˆN ,

and

G̃G
tj “

p
ÿ

`“1

g̃ptω`qS` P RNˆN , @j “ 1, . . . , J.

We also define h̃t,k and g̃t,k as row vectors as follows:

h̃t,k “ δ
J
k H̃G

t , g̃t,k “ δ
J
k G̃G

t .

Proposition 8.1. Given a fixed set of increasing dilations ttjuJj“1, the synthesis
and analysis filters sets respectively K and K̃, the perfect reconstruction condition

(31) HG
tJ H̃G

tJ `

J
ÿ

j“1

GG
tjG̃

G
tj “ I

is guaranteed if and only if

hptJω`qh̃ptJω`q `
J
ÿ

j“1

gptjω`qg̃ptjω`q “ 1, @ω` P r0, 2s.
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Proof.

HG
tJ H̃G

tJ `

J
ÿ

j“1

GG
tjG̃

G
tj “

p
ÿ

`,`1“1

hptJω`qh̃ptJω`1qS`S`1 `
J
ÿ

j“1

p
ÿ

`,`1“1

gptjω`qg̃ptjω`1qS`S`1

“

p
ÿ

`“1

hptJω`qh̃ptJω`qS` `
J
ÿ

j“1

p
ÿ

`“1

gptjω`qg̃ptjω`qS`

“

p
ÿ

`“1

“

hptJω`qh̃ptJω`q `
J
ÿ

j“1

gptjω`qg̃ptjω`q
‰

S`

Consequently, (31) is guaranteed if and only if

hptJω`qh̃ptJω`q `
J
ÿ

j“1

gptjω`qg̃ptjω`q “ 1 @` “ 1 ¨ ¨ ¨ , p. �

We now define a frame as follows.

Definition 8.5. Let G “ pV, Eq be a directed graph and µ a measure on V. A
countable family of elements tfkunk“1 P `

2pVq is said to be a frame if for any graph
signal f P `2pVq we have

A}f}2 ď
n
ÿ

k“1

|xf ,fky|
2 ď B}f}2,

for some constants 0 ă A ď B ă 8 which are called frame bounds.

We introduce the rectangular matrix K “ pHG
tJ ,G

G
t1 , . . . ,G

G
tJ q P RNˆNpJ`1q

where :

K “
`

hGtJ ,1, . . . , h
G
tJ ,N

, gGt1,1, . . . , g
G
tJ ,1

, . . . , gGtJ ,N
˘

P RNˆNpJ`1q.

We also introduce the following rectangular matrix K̃ “ pH̃G
tJ , G̃

G
t1 , . . . , G̃

G
tJ q P

RNpJ`1qˆN

(32) K̃ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

h̃GtJ ,1
...

h̃GtJ ,N
g̃Gt1,1
...

g̃GtJ ,1
...

g̃GtJ ,N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RNpJ`1qˆN .

Proposition 8.2. Let K and K̃ be respectively the synthesis and analysis filter
banks. We assume that the filter banks K and K̃ verifies the perfect reconstruction
condition enunciated at proposition 8.1. Consequently, K̃ is a frame for `2pVq with
lower frame bound 1{}K}2 and upper frame bound }K̃}2.

Proof. We have

}K̃f}2 “
N
ÿ

k“1

|xh̃GtJ ,k,fy|
2 `

J
ÿ

j“1

N
ÿ

k“1

xg̃Gtj ,k,fy|
2.
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Consequently, we can write

A}f}2 ď }K̃f}2 ď B}f}2,

A}f}2 ď
N
ÿ

k“1

|xh̃GtJ ,k,fy|
2 `

J
ÿ

j“1

N
ÿ

k“1

xg̃Gtj ,k,fy|
2 ď B}f}2,

where A “ 1{}K}2 et B “ }K̃}2.
The right side is obtained by Cauchy-Schwarz inequality applied on }K̃f}2. The

left side is obtained by the fact that }f}2 “ }KK̃f}2 ď }K}2}K̃f}2 and application
of the Cauchy-Schwarz inequality. As a result, K̃ is a frame. �

Definition 8.6 (Wavelet decomposition of a signal on a directed graph). Any graph
signal f P `2pVq can be expressed as follows :

f “
N
ÿ

k“1

xf , h̃tJ ,ky htJ ,k `
J
ÿ

j“1

N
ÿ

k“1

xf , g̃tj ,ky gtj ,k.

8.2. Critically sampled wavelet transform on directed graphs.

8.2.1. Notations. We first recall relevant and useful notations for a clear under-
standing of the construction of diffusion wavelets [21, 22]. Two notations are intro-
duced: one for the representation of linear transformations as matrices and a second
for the representation of sets of vectors as matrices where columns correspond to
a vector in the set. These notations were used in [21, 22] except that we adopt a
column vector convention whereas a row vector convention was used in [21, 22].

Let V0 “ `2pVq be the space of functions defined over the vertices of a directed
graph G “ pV, Eq. If L is a linear transformation of V0 into V0, rLsB2

B1
indicates

the matrix representing the linear transformation L with respect to the basis B1

in the domain and B2 in the range. A set of vectors X represented in a given
basis B will be written in the matrix form rXsB where the columns of rXsB are
the coordinates of the vectors X in the coordinate system defined by B. Generally,
rB1sB2 “ rIsB2

B1
represent the basis vectors B1 in terms of the basis B2. We will

note that, for a given basis B if the input and output bases are the same, rIsBB “ I
the identity matrix. We will also abuse this notation if B2 spans a subspace of the
space spanned by B1. If B1 and B2 are two bases, the representations of X in B1

and B2 are related as follows: rXsB2
“ rIsB2

B1
rXsB1

. If B1, B2, B3, B4 are arbitrary
bases, the matrix representation of L with respect to the basis B1 in the domain
and B2 in the range in the different bases is expressed as

rLsB2

B1
“ rIsB2

B4
rLsB4

B3
rIsB1

B2
.

Furthermore, if B1 and B2 are linearly independent sets of vectors that do not span
the whole space V0 then we will still use the notation rLsB2

B1
, but in that case it will

represent the restriction of the linear transformation L to the domain and range
subspaces spanned by B1 and B2.

8.2.2. Diffusion wavelets. The construction of the diffusion wavelets [21, 22] en-
ables a multi-resolution analysis of functions on graphs generalizing the concept of
classical multiresolution analysis [36]. The starting point of this construction is a
diffusion operator T. Similarly to the classical multiresolution analysis, diffusion
wavelets is characterized by a family of nested subspaces V0 Ě V1, ¨ ¨ ¨Vj Ě ¨ ¨ ¨ ,
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where each subspace Vj is spanned by a basis of scaling functions Φj . The com-
plement of Vj`1 into Vj is called Wj and is spanned by a set of diffusion wavelets
Ψj .

8.2.3. Construction. The construction of diffusion wavelets proceeds with a diffu-
sion operator T defined on a directed strongly connected graph G “ pV, Eq. In the
original diffusion wavelets framework by Coifman and Maggioni [21], the graph is
assumed undirected and they suggest using the reversible random walk operator P.

More generally, any operator T can be used as long as it is a low-pass filter when
it is applied to localized graph signals. Given a directed graph G, an appropriate
choice is to use the operator T “ Π1{2PΠ´1{2 where P is the random walk operator
with low-pass frequency response with respect to the definition proposed in the
section 6.

Assuming an ordering of vertices in V, T is originally represented on the canonical
basis Φ0 “ tδkukPV of V0 where δk is the Kronecker delta function corresponding
to the vertex k P V. Using the notations from the section 8.2.1, rTsΦ0

Φ0
is the matrix

representation of the linear operator T with respect to the basis Φ0 in the domain
and Φ0 in the range.

The columns of the matrix rTsΦ0

Φ0
can be described as a set of functions rΦ1 “

trφ1,kukPV represented in the basis Φ0. Each element rφ1,k, k P V of rΦ1 corresponds
to the action of T on the Kronecker δ-function at vertex k and is represented as
rrφ1,ksΦ0

“ rTsΦ0

Φ0
δk.

The low-pass property of T leads to the fact that each element rφ1,k of rΦ1 is
a function localized around its vertex k whose support extends to its close neigh-
bors. In terms of the diffusion wavelets construction, the elements rφ1,k, k P V are
therefore interpreted as scaling functions. Due to the fact that the support of each
element rφ1,k covers a small neighborhood around their respective vertices, these
elements rφ1,k can generally be well approximated by a linear combination of the
other functions rφ1,l with l ‰ k. The next stage of the construction is a column
subset selection stage [25]. The aim is to find a small number of columns of Φ̃1,
forming a set C such that the residual }rΦ̃1sΦ0 ´ΠCrΦ̃1sΦ0}β is as minimal as pos-
sible where ΠC is the projection matrix onto the space spanned by the columns of
C and β denotes the spectral norm or the Frobenius norm.

More precisely, this step involves the selection of a subset trφ1,k, k P I1u from
rΦ1, |I1| ď |V|. We select a subset trφ1,k, k P I1u such that all rφ1,k are well-enough
approximated by linear combinations of the functions in the subset. In classical
signal processing terms, this step is analogous to a subsampling of a set of scaling
functions in the classical discrete wavelet transform. Coifman and Maggioni used a
greedy approach to build the set I1 iteratively by using a modified Gram-Schmidt
orthogonalization procedure [21].

The subset trφ1,k, k P I1u spans a subspace V1 which corresponds to the first
approximation subspace of the multi-resolution analysis. We will thus denote
trφ1,k, k P I1u as Φ1, where Φ1 is by definition a basis of V1 that is generally
not orthogonal. The vectors in Φ1 are the scaling functions at scale 1.

In order to define the next scales of scaling functions, we consider the compression
step of the diffusion operator T on the subspace V1, that is its restriction on V1.
The latter can be represented in Φ1 as
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rTsΦ1

Φ1
“ rIsΦ1

Φ0
rTsΦ0

Φ0
rIsΦ0

Φ1
.

where rIsΦ1

Φ0
represents the restriction of the signal space V0 to V1 (with respective

bases Φ0 and Φ1) and rIsΦ0

Φ1
represents the embedding of V1 in V0.

The next approximation space V2 Ă V1 and its associated basis Φ2 can be
obtained in the same way as the definition of V1 and its basis Φ1 except that we
now consider the operator T2 restricted to V1 instead of T in V0.

The columns of rT2s
Φ1

Φ1
“ prTsΦ1

Φ1
q2 can be interpreted as scaling functions at

scale 2, rΦ2 “ trφ2,ku, represented in the basis Φ1. From these functions we extract
a subset Φ2 “ trφ2,k, k P I2u such that any function in rΦ2 is well-approximated by
a linear combination of functions of Φ2.

After j iterations of this procedure we have defined j approximation subspaces
Vj Ă Vj´1 Ă ¨ ¨ ¨ Ă V1 with corresponding bases Φj ,Φj´1, . . . ,Φ1. At each step the
basis Φj is defined by its representation in the basis Φj´1 based on the restriction
of the operator T2j to Vj´1. In order to represent these functions in the original
basis Φ0 of V0 we can use

rΦjsΦ0 “ rIs
Φ0

Φj
“ rIsΦ0

Φ0
rIsΦ0

Φ1
¨ ¨ ¨ rIs

Φj´2

Φj´1
rIs

Φj´1

Φj
.

Since every function in Φ0 is defined on V0, so is every function on Φj . Hence
any function in the approximation space Vj can be extended naturally to the whole
space V0.

Regarding the construction of the wavelets, we propose to construct the wavelet
bases Ψj for the subspaces Wj by selecting a subset of the columns of the band pass
operator rIVj ´Φj`1Φ:j`1s

Φj
Φj

which is the orthogonal projector on the complement
of Vj`1 into Vj . The wavelets capture the detail lost from going from Vj to Vj`1.
As our framework falls into bi-orthogonal scope, we need to build the dual wavelet
bases. For a scale j, we have a wavelet base Ψj and we need to construct the
associated dual base pΨj obtained such that we have the following relation

pΨ:jΨj “ I.

where pΨ:j is the pseudo-inverse of Ψj . We mention that in [22], biorthogonal wavelet
transform is proposed but only the scaling functions are actually defined. Our
construction is identical but we also propose a definition for wavelets.

8.2.4. A generalization using more arbitrary scaling operators. We propose a gen-
eralization of the diffusion wavelet framework that enables it to be combined for
instance with the wavelet construction presented in Section 8.2. The idea is merely
to replace the powers of T as multiresolution scaling operators by more arbitrary
low-pass filters. More precisely, where the operator T2j is used to define the ap-
proximation space Vj`1 in section 8.2.3, we propose to use instead a low-pass graph
filter Hj . If the graph filters Hj correspond to the scaling operators defined in sec-
tion 8.1 with appropriately increasing scales, this approach provides a way to reduce
the redundancy of the sets of scaling functions. Similarly, the same approach could
be used to reduce the redundancy of the wavelet functions defined in Section 8.2.
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Figure 10. Orthogonal and biorthogonal scaling functions on the
directed cycle graph C256.

8.3. Applications. This section is devoted to illustrate our multiresolution analy-
sis framework through the visualization of wavelets and scaling functions on regular-
type structures and semi-supervised learning on directed graphs. The application
framework will be the same as in section 7.

8.3.1. Multiresolution analysis on the directed cycle graph. We show an example
of multi-resolution analysis on the directed cycle graph CN with N “ 256. We
use the same assumptions made in section 6.4.1. We construct both orthogonal
and biorthogonal multi-resolution analyses on CN through the framework of the
diffusion wavelets applied on the dyadic powers of T, i.e. tT2juJj“1. We set the
number of scales at J “ 6.

Figure 10 shows the orthogonal and biorthogonal scaling functions at scales 1,3
and 5. At each scale, we represent 3 or 4 scaling functions.

Figure 11 shows the orthogonal and biorthogonal wavelet functions also at scales
1,3 and 5.

We note at each scale that the support of the orthogonal scaling functions is
larger than the support of the biorthogonal scaling functions. We also note at
scale 3 and 5 that biorthogonal wavelet functions have support slightly smaller
than the orthogonal wavelets functions. Furthermore, we note that orthogonal
scaling functions as well orthogonal wavelet functions have more oscillations than
their biorthogonal counterparts. That means that orthogonal scaling and wavelet
functions have a poorer frequency localization. The conclusions about the spatial
localization of the scaling functions are identical to the conclusions in [24]. The
novelty here is we work on the directed circle graph and we show the orthogonal
and biorthogonal wavelets functions in addition to the orthogonal and biorthogo-
nal scaling functions. Finally, the scaling and wavelets functions are not centered
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Figure 11. Orthogonal and biorthogonal wavelet functions on the
directed cycle graph C256.

around the vertex where they have been selected. They propagate towards the par-
ents’ node of the selected vertex. We can also note the orthogonal wavelet transform
is more robust with respect to perturbations than the biorthogonal wavelet trans-
form. Let Wortho “ rΨ1, . . . ,Ψ5,Φ5s be the inverse wavelet transform and Wbiorth

its biorthogonal counterpart. We have that the condition numbers κpWorthoq « 33
and κpWbiorthoq « 2 ˆ 104. Consequently, the biorthogonal wavelet transform is
much more sensitive to perturbations than its orthogonal counterpart.

8.3.2. Multiresolution analysis on the directed Watts-Strogatz graph. In this section,
we show examples of multi-resolution analyses on the directed version of a graph
from the Watts-Strogatz model. The Watts-Strogatz model [85] is a undirected
random graph model exhibiting small world properties including short average path
lengths and high clustering [86]. The construction of a directed graph from the
Watts-Strogatz model starts with a directed cycle graph with N vertices. Each
node is connected to its k next nodes following the direction of the directed cycle
graph. For the sake of simplicity, we consider the k next nodes connected to a given
node i following the direction of the directed cycle graph as its "closest" neighbors.
Starting from an arbitrary vertex, we apply the following procedure to each vertex
in a clockwise manner. At vertex i, the edge that connects i to each of its next nodes
is randomly rewired with probability p or remains untouched with probability 1´p.
This procedure is repeated cyclically for each successive vertex until the vertex i is
selected again. We denote by G „ DWSpN,K, βq a graph constructed following a
directed Watts-Strogatz model with N vertices, K nearest neighbors and rewiring
probability β.

In a first instance, we analyze the scaling functions built from low-pass filters
based on T̄α at a given scale of G1 „ DWSp64, 2, 0q. That is a special case of the
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Figure 12. (Case 1) 50th scaling function at scale t=16 on the
graph G „ DWSp64, 2, 0q, for all α P r0, 1s.

directed Watts-Strogatz model with no rewiring. In a second instance, we analyze
some scaling functions built from low-pass filters based on T̄α at a given scale of
G2 „ DWSp64, 2, 0.02q. Lastly, we show both orthogonal and biorthogonal scaling
and wavelets functions built following the construction Section 8.2. We summarize
the following cases in table 6.

Case Graph Reference operators

Case 1 : Scaling functions built wrt. sect. 8.1 G1 „ DWSp64, 2, 0q T̄α P T̄

Case 2: Scaling functions built wrt. sect. 8.1 G2 „ DWSp64, 2, 0.02q T̄α P T̄

Case 3: Scaling functions built wrt. sect. 8.2 G2 „ DWSp64, 2, 0.02q T̄

Table 6. Table of the different cases for the directed Watts Stro-
gatz graph.

Case 1. In this case, we analyze some scaling functions built from low-pass filters
based on P̄α at scale t “ 24 of a directed Watts-Strogatz graph G2 „ DWSp64, 2, 0q.
We consider the following low-pass filters

(33) T̄α “ Π1{2P̄αΠ´1{2, @α P r0, 1s.

and we construct a collection of low-pass graph filters at a given scale following the
construction presented in section 8.1. More precisely, we build the filters Hα as
follows

Hα “
ÿ

ωPω

hptωqSω,α,

with t “ 24 and hpxq “ expp´xq.
Figure 12 represents the 50th scaling function hα,50 “ Hαδ50 at scale t “ 24 built

from low-pass filters Tα, for all α P r0, 1s according the construction section 8.1 on
the directed Watts-Strogatz graph G „ DWSp64, 2, 0q. The particularity of this case
is that the following graph has no rewiring. Consequently, the associated adjacency
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matrix is circulant. All the low-pass filters Tα admit the same discrete Fourier basis
and the associated scaling functions hα,50 are exactly the same. We observe that
the scaling function is centered around the node 50 and has a symmetric shape. In
this case, for non symmetric graph filters Hα, the scaling functions have symmetric
shape and are centered around its given node.
Case 2. In this case, we analyze some scaling functions built from low-pass filters
based on P̄α at scale 10 of G2 „ DWSp64, 2, 0.02q. We also consider the following
low-pass filters

(34) T̄α “ Π1{2P̄αΠ´1{2, @α P t0, 0.5, 1u.

and we construct a collection of low-pass graph filters at a given scale following the
construction presented in section 8.1. More precisely, we build the filters Hα as
follows

Hα “
ÿ

ωPω

hptωqSω,α

with t “ 24 and hpxq “ expp´xq. We observe the 50th scaling functions at the scale
t “ 24, that is hα,50 “ Hαδ50.

Figure 13 represent the 50th scaling function at the scale t “ 24, for different α,
hα,50. The graph G2 admits a directed edge from the node 50 to the node 11 and
a directed edge from the node 30 to the node 50. As α increases towards 1, we
observe that the scaling function hα,50 propagates around the child node 11. This
means the more α increases, the more the influence of the backward random walk
P˚ is important. Wee note for α “ 0.5, the scaling function hα,50 is centered around
the child node 11 an the parent node 30. This case seems to be the equilibrium.
Finally, as α goes to 0, we observe that hα,50 propagates around the parent node
30.
Case 3. Here, we consider orthogonal and biorthogonal scaling functions on a graph
G „ DWSp64, 2, 0.02q used on the Case 2. These orthogonal and biorthogonal
scaling functions are built from the diffusion wavelets procedure. We start the
procedure with the low-pass filter H “ T2 and we look at the dyadic powers of H

i.e. tH2juJj“1. We set the number of scales at J “ 5. We observe the orthogonal
an biorthogonal scaling functions at node 49 at scale 3 obtained by the diffusion
wavelets procedure and we compare to the scaling function at node 49 built from a
graph filter based on T̄ at the scale t “ 16.

Figure 14 shows the orthogonal and bi-orthogonal scaling functions at node 49
built w.r.t. the diffusion wavelets framework and the scaling function at node 49
built w.r.t. the spectral graph wavelets framework. We note that the biorthogonal
scaling function and the scaling function built by the spectral graph wavelet frame-
work are similar, i.e. well localized around nodes 11 and 30 and localized around
49 with a large size support. By contrast, the orthogonal scaling function has a
poor spatial localization around the nodes 11 and 30.

8.3.3. Semi-supervised learning on directed graphs with `1-regularization. We dis-
cuss the semi-supervised learning approach in the case of functions over directed
graphs with `1 regularization on the wavelet coefficients. Our aim is to show that
the performance of the semi-supervised learning problem with `1 regularization is
competitive to the existing approaches, e.g. the semi-supervised learning problem
studied in section 7. We discuss the following semi-supervised learning problem,
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Figure 13. 50th scaling function at scale 4 on a graph G „

DWSp64, 2, 0.02q, α P t0, 0.5, 1u, eq. (33).

again on the example of the political blogs dataset [28]. We use the same no-
tations described in section 7 and work on the subgraph G1. The `1-regularized
semi-supervised learning problem is

(35) w˚ “ argmin
w

}ỹ ´MKw}22 ` λ}w}1, λ P R`.

The graph signal ỹ “ My is the partially labeled graph signal with M “

tmijut1ďi,jďNu is the mask operator, i.e. the diagonal matrix where mii “ 1viPO
where O Ă V is the subset of known labels.
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Figure 14. Orthogonal and bi-orthogonal scaling functions built
w.r.t the diffusion wavelet framework versus scaling function built
w.r.t spectral wavelets framework.

The matrix K “ pHJ ,G1, ¨ ¨ ¨ ,GJq is the synthesis filter bank. If we set X “

MK, the equation (35) can be rewritten as

w˚ “ argmin
w

}ỹ ´Xw}22 ` λ}w}1, λ P R.

The formulation (35) is identical to the formulation of the problem of signal
restoration with redundant wavelet transforms in [68], except that K is the syn-
thesis wavelet transform for functions defined over directed graphs. Furthermore,
previous approaches of semi-supervised learning on undirected graphs have been in-
vestigated using overcomplete graph wavelets [69] or critically sampled spline graph
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Figure 15. SSL on the largest connected graph of US political blogs.

wavelets [70]. The `1-regularized synthesis semi-supervised learning problem is con-
vex and can be solved efficiently using e.g. proximal splitting methods [71, 72, 73].
From the solution w˚ of eq. (35), we define the restored signal f˚ as

f˚ “ signpKw˚q.

where L is the directed normalized Laplacian defined at (4) and the graph bandpass
filters G1,G2 are

We compare the performances of formulations (35) and (16). The formulation
(35) requires a synthesis filter bank K. We choose a two scales synthesis graph filter
K. We choose a two scales synthesis graph filter bank K “ pH2,G1,G2q based on
a heat kernel construction [83]

Hj “ e´Ltj , tj “ 2j , j “ 1, 2.

with L is the directed Laplacian defined at (4) and the graph bandpass filters
G1,G2 as

G2 “ H1 ´H2, G1 “ I´H1.

Figure 15 shows the performance of semi-supervised learning between the for-
mulation (35) and (16) on the largest strongly connected graph obtained from US
political blogs. The performance is obtained by averaging 200 realizations and
determining the value of the parameters λ and γ associated respectively to the
approaches (35) and (16) giving the best performance rates. On fig. 15, the per-
formance based on the `1 penalization of redundant graph wavelets coefficients on
directed graphs is competitive against the problem with `2 Dirichlet regularization
term for all percentage of known labels. Normally, one should expect better per-
formances in the `1 case but it seems not the case because our graph wavelets are
not good in terms of spatial localization. Still, in order to improve the perfor-
mance of the method (35), it could be wise to build new wavelets with a better
space-frequency characterization, and choose the best suitable number of scales
with respect to the characteristics of the data set.
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9. Conclusion

We introduced a novel harmonic analysis on directed graphs. First, we proposed
a frequency analysis for functions defined on directed graphs based on the eigen-
vectors of the random walk operator on a directed graph. From this Fourier-type
frequency interpretation, we showed how to construct redundant wavelets on di-
rected graphs as well as critically sampled wavelets by generalizing the diffusion
wavelets framework. Finally, we illustrated our harmonic analysis through exam-
ples of semi-supervised learning and graph signal modeling on directed graphs and
showed the relevance of our framework to existing approaches.
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