Fonctions de plusieurs variables réelles

\[a \in \mathbb{R}^n \]

Soit \(E, E' \) deux \(\mathbb{R} \)-enf, on considère les fonctions \(f : A \subseteq E \rightarrow E' \).

1 Classe d’une fonction

1.1 Notion de limite en un point

\[f : A \subset E \rightarrow E' ; \text{ soit } x \in A, \text{ on dit que } l = \lim_{y \rightarrow x} f(y) \text{ si } \forall \varepsilon > 0, \exists \delta > 0/\forall y \in A \setminus \{x\}, \|y-x\| < \delta \Rightarrow \|f(y) - l\| < \varepsilon. \]

Si cette limite existe, elle est unique. \(l = \lim_{y \rightarrow x} f(y) \text{ pour toute suite } (y_n) \subset A \setminus \{x\}, \lim y_n = x, \text{ alors } \lim_{y \rightarrow x} f(y_n) = l \).

1.2 Différentiabilité d’une application

\[\Omega \text{ un ouvert de } E, f : \Omega \rightarrow E' ; f \text{ est différentiable en } x_0 \in \Omega \text{ si elle existe } l \in \mathcal{L}(E, E') \text{ telle que } f(x_0+h) = f(x_0)+lh+\mathcal{O}(h) \text{ avec } \mathcal{O}(h) = o(h), l \text{ est alors unique : c’est la différentielle de } f \text{ en } x_0, \text{ ou application linéaire tangente à } f \text{ en } x_0. \]

- Si \(f \) est différentiable en \(x_0 \), alors \(f \) est continue en \(x_0 \).
- Si \(E \) et \(E' \) ne sont pas de dimension finie, on impose de plus \(l \in \mathcal{L}(E, E') \).
- \(\forall h, \lim f(x_0, h) = \lim_{t \rightarrow 0} f(x_0(t), x_0(t)) \) s’appelle aussi dérivée de \(f \) selon le vecteur \(h \).

On dit que \(f \) est différentiable sur \(\Omega \) si elle l’est en tout point de \(\Omega \). On peut alors définir \(df : x \in \Omega \rightarrow df(x) \in \mathcal{L}(E, E') \). On dit que \(f \) est \(C^1 \) si cette application est encore continue.

2 Dérivées partielles d’ordre supérieur

2.1 Définitions

Soit \(f : \Omega \subset E \rightarrow E', \text{ base de } E, \text{ Dire que } f \text{ est } D^k \text{ (ou } C^k \text{) ne dépend pas de } B. \text{ Les définitions suivantes sont encore indépendantes de } B. \text{ On dit que } f \text{ est } C^k \text{ sur } \Omega \text{ si toutes les } \frac{\partial^k f}{\partial x_1^{i_1} \cdots \partial x_n^{i_n}} \text{ ont un sens et sont continues. De proche en proche, on peut définir les dérivées } k-\text{jusques à } \frac{\partial^k f}{\partial x_1^{i_1} \cdots \partial x_n^{i_n}}, \text{ où } 0 \leq i_1, \ldots, i_n \leq k \text{ et } i_1 + \cdots + i_n = k, \text{ on ne pose pas toujours distincts.}

Théorème de Schwarz : soit \(f : \Omega \subset E \rightarrow E', \text{ supposée } C^k, \text{ Si } \sigma \in \mathfrak{S}_n \text{ (permutations de } [1, n] \cap \mathbb{N}) \text{, alors :}

\[\frac{\partial}{\partial x_{i_1}} \cdots \frac{\partial^{k}}{\partial x_{i_k}} \cdots \frac{\partial}{\partial x_{i_2}} \cdots \frac{\partial^{k}}{\partial x_{i_k}} \cdots \frac{\partial}{\partial x_{i_1}} = \frac{\partial}{\partial x_{i_1}} \cdots \frac{\partial^{k}}{\partial x_{i_k}} \cdots \frac{\partial}{\partial x_{i_2}} \cdots \frac{\partial^{k}}{\partial x_{i_k}} \cdots \frac{\partial}{\partial x_{i_1}} \]

2.2 Inégalités des accroissements finis

Soit \(f : \Omega \subset E \rightarrow E', \text{ (ou } \Omega \text{ ouvert convexe, }) \text{ On suppose que } \exists M > 0/\forall x \in \Omega, \|df(x)\|_M \leq M. \text{ Alors } f \text{ est } M-\text{lip-schitzien.}

Réciproquement, soit \(f : \Omega \subset E \rightarrow E', \Omega \text{ ouvert quelconque. Si } f \text{ est } M-\text{lip-schitzien, alors } \|df(x)\|_M \leq M \text{ pour tout } x \in \Omega \).

Conséquence : soit \(\Omega \) un ouvert convexe, \(f : \Omega \rightarrow E' \), \(f \) est continue son \(df \) est nulle en tout point.

2.3 Formule de Taylor-Youngh

Soit \(E \text{ un eucl. } \omega \text{ définie au voisinage de } 0. \text{ On dit que } \omega \text{ est \text{ o}(h^k) (A \in \mathbb{R}^n \text{ donné) si elle est de la forme } \|h\|^k \cdot \omega(h) \text{ où } k \in \mathbb{N} \text{ et } \omega(h) \text{ est } o(\|h\|^k) \text{ à } h \neq 0. \text{ Si } f : \Omega \subset E \rightarrow E', \text{ base de } E, \text{ alors :}

\[f(x) = f(X) + \sum \frac{\partial f}{\partial x_i}(X)h_i + \frac{1}{2!} \sum \sum \frac{\partial^2 f}{\partial x_i \partial x_j}(X)h_i h_j + o(h^2). \]

2.4 Extrema locaux de fonctions scalaires

Soit \(E \text{ un eucl. } f : \Omega \rightarrow \mathbb{R}, \Omega \subset E \text{ ouvert. } f \text{ admet un maximum local en } x_0 \in \Omega \text{ s’il existe } r > 0 \text{ tel que } B(x_0, r) \subset \Omega \text{ et } f(x) \leq f(x_0) \text{ pour tout } x \in B(x_0, r). \text{ Ce maximum local est strict si } f \text{ est de classe } C^1 \text{ et } f(x_0) > f(x) \text{ pour tout } x \in B(x_0, r). \text{ On définit alors sans difficulté les notions de minimum local, minimum local strict. Un extremum est soit un minimum, soit un maximum } \mathbb{C}_N \text{ si } f \text{ est } C^2 \text{ et admet un extremum local en } x_0 \in \Omega \text{ alors } df_{x_0} \text{ est nulle : } x_0 \text{ est un point critique de } f. \]
Autre CN (hors programme) : \(f : \mathbb{C}^d \to \mathbb{R}, q_{x_0}(h) = \sum_{i=0}^{d} \frac{\partial^2 f}{\partial x_i^2}(x_0)h_ih_i \) est une forme quadratique. Pour que \(f \) admette
\[M = \left[\begin{array}{cccc} r & s & t \\ u & v & w \\ x & y & z \\ \\ \end{array} \right]. \]
- Si \(d < M \), il n'y a pas d'extremum local en \(x_0 \)
- Si \(d > M > 0 \) et \(r > t \), \(f \) admet un minimum local en \(x_0 \)
- Si \(d > M > 0 \) et \(r < t \), \(f \) admet un maximum local en \(x_0 \)

Autre CN, hors programme : \(f : \mathbb{C}^d \to \mathbb{R} \) ouvert de \(E, E \) en un quelconque. Soit \(x_0 \in \Omega \) un point critique, \(q = q_{x_0} \). Si \(q \) est définie positive (resp. définie négative), \(f \) admet un minimum (resp. un maximum) local en \(x_0 \). Si \(q(h_0) < 0 \) et \(g(h_0) > 0 \), alors \(x_0 \) n'est pas un extremum local de \(f \).

Interprétation géométrique : Soit \(f : \mathbb{C} \to \mathbb{R}^2 \), \(\Sigma = \{(x, y) \in \mathbb{R}^2 / (x, y) \in \Omega \land \chi = f(x, y)\} \). \((x_0, y_0) \) est un point critique de \(f \) si le plan tangent à \(f \) en \((x_0, y_0) \) est horizontal. Supposons alors que \(f \) est \(\mathbb{R}^2 \) et \((x_0, y_0) \) critique :
- Si \(r - s > 0 \), \(\Sigma \) est localement de la forme d'un paraboloide de révolution et \(M_0 \) est dit elliptique
- Si \(r - s < 0 \), \(\Sigma \) est hiperbolique, ou point-selle, ou col. \(\Sigma \) a localement la forme d'une selle.

3 Théorèmes d'inversion

3.1 Remarques

Soit \(E, E' \) deux ensembles de \(E' \) et \(f : \mathbb{C}^d \to \mathbb{R}^d \) où \(k + 1 \). On dit que \(f \) est un \(C^k \)-difféomorphisme de \(\Omega \) sur \(\Omega' \) si :
- \(f(\Omega) = \Omega' \) est un ouvert de \(E' \)
- \(f \) est une bijection de \(\Omega \) sur \(\Omega' \)
- \(f^{-1} \) est encore \(C^k \)

Propriété d'invariance du domaine : si un tel difféomorphisme existe, alors \(\dim E = \dim E' \).

3.2 Théorème d'inversion locale

Soit \(E, E' \) deux ensembles de \(E \) et \(f : \mathbb{C}^d \to \mathbb{R}^d \) où \(k + 1 \). On dit que \(f \) est un \(C^k \)-difféomorphisme de \(\Omega \) sur \(\Omega' \) si :
- \(f(\Omega) = \Omega' \) est un ouvert de \(E' \)
- \(f \) est injectif et \(f \) est un \(C^k \)-difféomorphisme de \(\Omega \) sur \(\Omega' \).

Consequence : soit \(f : \mathbb{C}^d \to \mathbb{R}^d \) \(f \) est un \(C^k \)-difféomorphisme inertielle \(f(\Omega) \) sur \(f(\Omega) \) si le point \(x \) et \(f(x) \) sont un \(C^k \)-difféomorphisme de \(I \) sur \(I \).

3.3 Théorème d'inversion globale

Soit \(f : \mathbb{C}^d \to \mathbb{R}^d \) \(f \) est injectif et \(f \) est un \(C^k \)-difféomorphisme de \(\Omega \) sur \(\Omega' \).

Remarque : dans le cas réel, si \(I \) est un intervalle de \(\mathbb{R} \) et \(f : \mathbb{C}^d \to \mathbb{R}^d \) telle que \(f' \) est définie sur \(I \) alors \(f \) est un \(C^k \)-difféomorphisme de \(f \) sur \(f(\Omega) \).

3.4 Théorème des fonctions implicites \(\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \)

Soit \(f : \mathbb{C}^d \to \mathbb{R}^d \) ouvert de \(E \) et \(f \) une application \(f \) et \(f \) est un \(C^k \)-difféomorphisme de \(\mathbb{R}^d \) sur \(\mathbb{R}^d \).

3.5 Théorème des fonctions implicites \(\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \)

Soit \(f : \mathbb{C}^d \to \mathbb{R}^d \) et \(g : \mathbb{R}^d \to \mathbb{R}^d \) tels que \(f(x_0) = 0 \) et \(g(x) \neq 0 \). Alors il existe une troisième intervalle non vide \(I \) et \(K \) tels que \(I \times K \neq \mathbb{R}^d \) et \(g \in I \times K \) et il existe \(\mathbb{R}^d \) telle que \(\mathbb{R}^d \times \mathbb{R}^d \neq 0 \).

3.6 Énoncé général des fonctions implicites \(\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \)

Soit \(f : \mathbb{C}^d \to \mathbb{R}^d \) et \(g : \mathbb{R}^d \to \mathbb{R}^d \) tels que \(f(x, y, ..., y_n) = g(x, y, ..., y_n) \) soit \((X^*, Y^*) = (x_1, ..., x_n, y_1, ..., y_n) \) tel que \(f(X^*, Y^*) = 0 \), \(J_{X,Y}(f) = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \\ \frac{\partial f}{\partial y_1} & \cdots & \frac{\partial f}{\partial y_n} \\ \end{pmatrix} \in \mathbb{R}^{n \times n}(R) \) où la jacobienne partielle par rapport à \(Y^* \) est supposée inversible. On peut alors écrire \(i_{1} \times \cdots \times i_{n} \neq \emptyset \times \cdots \times \emptyset \neq \emptyset \times \cdots \times \emptyset \) tels que \(\mathbb{R}^d \times \mathbb{R}^d \neq 0 \) et \(f(X, Y) = 0 \) \(\Rightarrow Y = f(X) \).

4 Formes différentielles de degré 1

4.1 Généralités

Soit \(E, E' = \mathbb{R}^d \) et \(\mathbb{R}^d \) un ouvert. Une forme différentielle de degré 1 sur \(\mathbb{R}^d \) et de classe \(C^k \) est une application \(\mathbb{R}^d \to \mathbb{R}^d \) et \(\mathbb{R}^d = \mathbb{R}^d \times \mathbb{R}^d \) sa base duale. Une forme différentielle \(f \) est donnée par : \(f = \sum_{i=1}^{n} f_i(x_1, ..., x_n) \partial i \). On peut donc noter \(\sum_{i=1}^{n} f_i(x_1, ..., x_n) \partial i \).

4.2 Formes fermées en extérieurs

Soit \(f \) une fonction \(\mathbb{R}^d \to \mathbb{R}^d \).

4.3 Théorème de Poincaré

Soit \(f : \mathbb{C}^d \to \mathbb{R}^d \).

- Pour que \(f \) soit exacte, il faut qu'elle soit fermée.
- Si \(\Omega \) est étoilé, cette condition est suffisante.