DEVOIR DE MATHEMATIQUES N°13

KÉVIN POLISANO
MP*

Vendredi 19 mars 2010

PARTIE I : CONVEXITÉ

1.a On veut montrer que le min est atteint, et F est continue, ce qui nous suggère d’utiliser le théorème de Heine, mais pour l’appliquer on doit au préalable se ramener à un compact.

Comme $F(u) \to +\infty$ quand $\|u\| \to +\infty$ il existe $\alpha > 0$ tel que $\|u\| > \alpha \Rightarrow F(u) > F(0)$. On va alors considérer l’ensemble $C = \{v \in \mathbb{R}^n, F(v) \leq F(0)\}$ qui est un fermé de \mathbb{R}^n (car image réciproque par F continue du fermé $]-\infty, F(0)]$ de \mathbb{R}) et $C \subset B^r(0, \alpha)$ donc C est un fermé borné de \mathbb{R}^n, d’après le théorème de Borel-Lesbegue C est un compact de \mathbb{R}^n.

F est continue donc d’après le théorème de Heine $\exists u \in C, F(u) = \min_{v \in C} F(v)$.

Enfin si v n’appartient pas à C alors $F(v) > F(0) \geq F(u)$. Conclusion : $\begin{cases} F(u) = \min_{v \in X} F(v) \end{cases}$

1.b Le minimum n’est en général pas unique, considérons par exemple la fonction $F : \mathbb{R}^n \to \mathbb{R}$ définie par $F(x, y) = (x^2 + y^2 - 5)^2$. F est bien continue, vérifie $F(u) \to +\infty$ si $\|u\| \to +\infty$ et atteint son min 0 sur le cercle d’équation $x^2 + y^2 = 5$ dans le plan (Oxy).

![Diagram](image)
Si F est supposée de plus strictement convexe alors le min est unique. En effet supposons que le min m soit atteint en 2 points distincts $u_1 \neq u_2$, $m = F(u_1) = F(u_2)$, alors $F(tu_1 + (1 - t)u_2) < tF(u_1) + (1 - t)F(u_2) = tm + (1 - t)m = m$ ce qui est absurde par définition du min.

2.a F différentiable sur \mathbb{R}^n, donc $F((1-t)u + vt) = F(u + t(v - u)) = F(u) + t(dF)_u(v - u) + o(t) \frac{F((1-t)u + vt) - F(u)}{t} = (dF)_u(v - u) + o(1)$

Donc $\lim_{t \to 0} \frac{F((1-t)u + vt) - F(u)}{t} = (dF)_u(v - u)$. Par ailleurs F étant convexe on a :

$$F((1-t)u + tv) - F(u) \leq (1-t)F(u) + tF(v) - F(u) = t(F(v) - F(u))$$

D'où :

$$\frac{F((1-t)u + tv) - F(u)}{t} \leq F(v) - F(u)$$

Puis en passant à la limite quand $t \to 0$ il vient :

$$(dF)_u(v - u) = < \nabla F(v), v - u > \leq F(v) - F(u) \iff F(v) \geq F(u) + < \nabla F(u), v - u > (1)$$

2.b Appliquons l'inégalité (1) aux couples (w, u) et (w, v) :

$$F(u) \geq F(w) + < \nabla F(w), u - w >$$

$$F(v) \geq F(w) + < \nabla F(w), v - w >$$

Avec $w = (1-t)u + tv$ on a $u - w = t(u - v)$ et $v - w = (1-t)(v - u)$ donc on a :

$$F(u) \geq F(w) + t < \nabla F(w), u - v >$$

$$F(v) \geq F(w) - (1-t) < \nabla F(w), u - v >$$

Multiplions la première inégalité par $(1-t)$ et la seconde par t, puis sommons les :

$$(1-t)F(u) + tF(v) \geq F(w) = F((1-t)u + tv)$$

Ainsi F est convexe.

3. Le sens \leq est immédiat, on applique 2.b avec l'inégalité stricte.

Le sens \Rightarrow est plus délicat, on ne peut pas appliquer tel quel la même méthode qu'en 2.a car par passage à la limite dans :

$$\frac{F((1-t)u + tv) - F(u)}{t} < F(v) - F(u)$$

l'inégalité deviendrait large. Pour pallier ce problème on prend $t' \in]0, t]$ et on vérifie que :

$$\frac{F((1-t')u + t'v) - F(u)}{t'} \leq \frac{F((1-t)u + tv) - F(u)}{t}$$

En effet la fonction $G : x \mapsto F((1-x)u + xv)$ est strictement convexe de \mathbb{R} dans \mathbb{R} :

$$G(tx + (1-t)y) = F(((1-t)x - (1-t)y)u + (tx + (1-t)y)v) = F(t[(1-x)u + xv] + (1-t)[(1-y)u + yv])$$
Puis par stricte convexité de F :

$$G(tx + (1-t)y) < tF((1-x)u + xv) + (1-t)F((1-y)u + yv) = tG(x) + (1-t)G(y)$$

Donc elle vérifie le lemme des 3 cordes, en particulier :

$$\frac{G(t') - G(0)}{t' - 0} \leq \frac{G(t) - G(0)}{t - 0}$$

ce que l’on voulait. Il ne reste plus qu’à faire tendre $t' \to 0$ avec t fixé :

$$(dF)_u(v-u) \leq \frac{F((1-t)u + tv) - F(u)}{t} \leq F(v) - F(u)$$

4.a La condition $\nabla F(u) = 0$ n’est en général pas suffisante pour que u soit un minimum de F, en effet reprenons notre exemple précédent $F : (x, y) \mapsto (x^2 + y^2 - 5)^2$ qui est bien continue, et vérifie $F(u) \to +\infty$ si $\|u\| \to +\infty$. Le gradient de F est :

$$\nabla F(x, y) = \begin{pmatrix} 4x^3 + 4x^2 - 8x \\ 4x^2 y + 4y^3 - 8y \end{pmatrix}$$

Donc $(0,0)$ est un point critique, mais $F(0,0) = 25$ tandis que le min de F est 0.

![Diagram](image)

4.b En revanche si F est de plus supposée **convexe** alors la condition devient suffisante puisque d’après (1) :

$$\forall v \in X, F(v) \geq F(u) + \langle \nabla F(u), v - u \rangle$$

Ainsi u est un point de **minimum** de F.

3
5.a F est convexe, donc on applique de nouveau (1) aux couples (u, v) et (v, u) :
\[F(v) \geq F(u) + \langle \nabla F(u), v - u \rangle \]
\[F(u) \geq F(v) + \langle \nabla F(u), u - v \rangle \]

Puis on somme les deux inégalités et on obtient :
\[\forall u, v \in \mathbb{R}^n, \langle \nabla F(u) - \nabla F(v), u - v \rangle \geq 0 \]

5.b Soit la fonction de \mathbb{R} dans \mathbb{R} définie par $\phi(t) = (1 - t)F(u) + tF(v) - F((1 - t)u + tv)$.

On note $f : \mathbb{R} \to \mathbb{R}^n$ définie par $f(t) = (1 - t)u + tv$ et $G = F \circ f$ de \mathbb{R} dans \mathbb{R}.

Différentions $G : (dG)_t(h) = (dF)_{f(t)} \circ (df)_t(h)$.

On a directement $(df)_t(h) = h(v - u)$ et comme G est réelle $(dG)_t(h) = G'(t)h$ (de même $(dG)_t(h) = G'(t)h$) d'où : $G'(t) = (dF)_{f(t)}(v - u) = \langle \nabla F(f(t)), v - u \rangle$ et par conséquent :
\[\phi'(t) = F(v) - F(u) - \langle \nabla F((1 - t)u + tv), v - u \rangle \]

ϕ est continue sur $[0, 1]$ et $\phi(0) = \phi(1) = 0$ donc d’après le théorème de Rolle :
\[\exists t_0 \in [0, 1], \phi'(t_0) = 0 \iff \langle \nabla F((1 - t)u + t_0v), v - u \rangle = F(v) - F(u) \]

Par hypothèse on a $\forall u, v \in \mathbb{R}^n, \langle \nabla F(u) - \nabla F(v), u - v \rangle \geq 0$, appliqué à $(1 - t)u + tv$ et u on a :
\[\langle \nabla F((1 - t)u + tv) - \nabla F(u), (1 - t)u + tv - u \rangle \geq 0 \iff \langle \nabla F((1 - t)u + tv), v - u \rangle \geq \langle \nabla F(u), v - u \rangle \]

En particulier pour $t = t_0$ il vient :
\[F(v) - F(u) \geq \langle \nabla F(u), v - u \rangle \]

Ceci étant valable pour tout $(u, v) \in \mathbb{R}^n$ on sait d’après 2.b que F et convexe.

6. On va comme en 3. se ramener au cas réel avec $G : t \mapsto F((1 - t)u + tv) = F(f(t))$. Vu 5.b :
\[G'(t) = (dF)_{f(t)}(v - u) = \langle \nabla F(f(t)), v - u \rangle = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(f(t)) \times (v_i - u_i) \]

Calculons la dérivée seconde de G, comme $v - u$ ne dépend pas de t on a :
\[G''(t) = \sum_{i=1}^{n} \left(\left[\frac{\partial F}{\partial x_i} \right]_{H} \right)'(v_i - u_i) \]

Or comme en 5.b : $(H(f(t)))' = (dH)_{f(t)}(v - u) = \langle \nabla H(f(t)), v - u \rangle = \langle \nabla \left[\frac{\partial F}{\partial x_i} \right]_{H}(f(t)), v - u \rangle$
\[G(t) = \sum_{i=1}^{n} \langle \nabla \left[\frac{\partial F}{\partial x_i} \right]_{H}(f(t)), v - u \rangle \times (v_i - u_i) \]

D’où :
\[G''(t) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial^2 F}{\partial x_j \partial x_i}(f(t)) \times (v_j - u_j) \right) \times (v_i - u_i) = \sum_{i=1}^{n} \left(\nabla^2 F(f(t))(v - u) \right)_i \times (v_i - u_i) \]
Soit finalement :

\[G''(t) = \langle \nabla^2 F(f(t))(v-u), v-u \rangle = \langle \nabla^2 F(u+t(v-u))(v-u), v-u \rangle \]

\[\Rightarrow F \text{ est convexe, on a alors vu en 3. que } G_{u,w}(t) = F(u+tw) \text{ est convexe } \forall u, w \text{ donc :} \]

\[\forall u, w, \forall t, G''_{u,w}(t) = \langle \nabla^2 F(u+tw)w, w \rangle \geq 0 \]

Donc si \(F \) convexe on a bien \(\forall u, v \in \mathbb{R}^n, < \nabla^2 F(u)v, v > \geq 0 \).

\[\iff \text{ Réciproquement si } \forall u, v \in \mathbb{R}^n, < \nabla^2 F(u)v, v > \geq 0 \text{ alors :} \]

\[\forall u, v \in \mathbb{R}^n, G''_{u,w}(t) \geq 0 \forall t \]

Donc \(\forall u, v \in \mathbb{R}^n G_{u,v} \) est convexe, reste à montrer qu’alors \(F \) est convexe, en effet :

\[F((1-t)u+tv) = F(u+t(v-u)) = G_{u,w}(t) = (1-t)G_{u,w}(0) + tG_{u,w}(1) = (1-t)F(u) + tF(v) \]

Si \(F \) est \(C^2 \) on a donc démontré l’équivalence suivante :

\[\boxed{ F \text{ convexe } \iff \forall u, v \in \mathbb{R}^n, < \nabla^2 F(u)v, v > \geq 0 } \]

Partie II : Régularisation quadratique

1. Soit l’application \(F_\lambda : \mathbb{R}^n \to \mathbb{R} \) définie par \(F_\lambda(u) = \| f - u \|^2 + \lambda \| Au \|^2 \).

\(F \) est \(C^2 \) car \(\| . \| \) se présente comme une somme de carré des composantes (donc un polynôme).

\[F_\lambda(u+h) = \langle f-u-h, f-u-h \rangle + \lambda < Au+Ah, Au+Ah > = F_\lambda(u) + \| h \|^2 - 2 \langle f-u, h \rangle + \lambda < Au, Ah > + \| Ah \|^2 \]

\(h \mapsto Ah \) est linéaire, donc continue car \(\mathbb{R}^n \) de dimension finie, donc il existe \(k \) tel que \(\| Ah \| \leq k \| h \| \), par conséquent \(\| Ah \|^2 \) est un \(o(h^2) \) (même \(o(h^2) \)). Et \(h \mapsto 2(\lambda < Au, Ah > - < f - u, h >) \) étant linéaire il s’agit donc de la différentielle de \(F_\lambda \) en \(u \) :

\[d(F_\lambda)_u(h) = 2(\lambda < Au, Ah > - < f - u, h >) = 2(\lambda A^*Au + u - f, h) \]

Il s’en suit que :

\[\nabla F_\lambda(u) = 2(\lambda A^*Au + u - f) \]

La différentielle de \(F_\lambda \) est l’application \(dF_\lambda : u \mapsto (dF_\lambda)_u \). Différentions-là à son tour :

\[dF_\lambda(u + k) = (dF_\lambda)_{u+k} = (dF_\lambda)_u + g(k) \quad \text{où } g(k) : h \mapsto 2 < \lambda A^*Ak + k, h > \]

\(g \) est clairement linéaire donc \((d^2F_\lambda)_u(k) = g(k) \) avec \(g(k)(h) = 2 < \lambda A^*Ak + k, h > \). Or :

\[(d^2F_\lambda)_u(k)(h) = \sum_{1 \leq i, j \leq n} \frac{\partial^2 F_\lambda}{\partial x_j \partial x_i}(u)h_i k_j = \langle \nabla^2 F_\lambda k, h \rangle \]

Ceci étant valable pour tout \(h \) on en tire \(\forall k, \nabla^2 F_\lambda(u)k = 2(\lambda A^*A + I_n)k \) et par suite :

\[\nabla^2 F_\lambda(u) = 2(\lambda A^*A + I_n) \]
2. Calculons la quantité suivante :
\[\nabla^2 F_\lambda(u)v, v \rangle = 2 < (\lambda A^* A + I_n) v, v > = 2 \lambda < A^* A v, v > + 2 < v, v > = 2 \lambda \| A v \|^2 + 2 \| v \|^2 > 0 \]
Ceci étant valable pour tous \(u, v \in \mathbb{R}^n \) on en déduit que \(F_\lambda \) est strictement convexe.

3. On vérifie que \(F_\lambda \) satisfait les conditions de la questions 1.1 : elle est continue puisque \(C^2 \), \(F_\lambda(u) \to +\infty \) quand \(\| u \| \to +\infty \) et est strictement convexe, donc la sous-question 1.b assure l’existence et l’unicité de \(u_\lambda \in \mathbb{R}^n \) tel que \(F_\lambda(u_\lambda) = \min_{v \in \mathbb{R}^n} F_\lambda(v) \).

Et d’après 1.4.b la condition \(\nabla F(u) = 0 \) est une CNS de minimalité pour \(F \) en \(u \) donc :
\[F_\lambda(u_\lambda) = \min_{v \in \mathbb{R}^n} F_\lambda(v) \iff \nabla F(u_\lambda) = 0 \iff u_\lambda - f + \lambda A^* A u_\lambda = 0 \]

4.a On a montré que \(\forall v \in \mathbb{R}^n, < (\lambda A^* A + I_n) v, v > > 0 \) donc \(\lambda A^* A + I_n \) est symétrique définie positive, donc son spectre est inclus dans \(\mathbb{R}^+ \) et il s’en suit que \(\lambda A^* A + I_n \) est inversible, on peut donc isoler \(u_\lambda \) :
\[u_\lambda = (\lambda A^* A + I_n)^{-1} f \]
Par continuité de l’inverse, en faisant tendre \(\lambda \to 0 \) il vient :
\[\lim_{\lambda \to 0} u_\lambda = f \]

4.b Comme \(F_\lambda(u_\lambda) \) est le minimum de \(F \) on a en particulier \(F_\lambda(u_\lambda) \leq F_\lambda(0) = \| f \|^2 \) d’où :
\[0 \leq \| A u_\lambda \|^2 = \frac{F_\lambda(u_\lambda) - \| f - u \|^2}{\lambda} \leq \frac{F_\lambda}{\lambda} \leq \frac{\| f \|^2}{\lambda} \]
Par encadrement il vient en passant à la limite :
\[\lim_{\lambda \to +\infty} A u_\lambda = 0 \]

5. D’après 3. on a la caractérisation des \(u_\lambda^1 \) :
\[u_\lambda^1 - f_1 + \lambda A^* A u_\lambda^1 = 0 \]
\[u_\lambda^2 - f_2 + \lambda A^* A u_\lambda^2 = 0 \]
Par soustraction on a :
\[(I_n + \lambda A^* A)(u_\lambda^1 - u_\lambda^2) = f_1 - f_2 \iff u_\lambda^1 - u_\lambda^2 = (I_n + \lambda A^* A)^{-1}(f_1 - f_2) \]
Par ailleurs en développant le produit scalaire :
\[\| (I_n + \lambda A^* A)v \|^2 = \| v \|^2 + \lambda^2 \| A^* A v \|^2 + 2 \| A v \|^2 \geq \| v \|^2 \Rightarrow \| v \| \leq \| (I_n + \lambda A^* A)v \| \]
Puis en faisant \(v \leftarrow (I_n + \lambda A^* A)^{-1} v \) on obtient :
\[\| (I_n + \lambda A^* A)^{-1} v \| \leq \| v \| \]
D’où la majoration suivante :
\[\| u_\lambda^1 - u_\lambda^2 \| \leq \| f_1 - f_2 \| \]

Partie III : Régularisation à croissance linéaire
1. Notons $H(u) = \langle e, A(u) \rangle$.

$$H(u + h) = \sum_{i=1}^{n} (A_i(u + h))_i = \sum_{i=1}^{n} \sqrt{\varepsilon^2 + ((Au)_i + (Ah)_i)^2} = \sum_{i=1}^{n} \sqrt{\varepsilon^2 + (Au)_i^2 + 2(Au)_i(Ah)_i + (Ah)_i^2}$$

$$H(u + h) = \sum_{i=1}^{n} \sqrt{\varepsilon^2 + (Au)_i^2} \left[1 + \frac{2(Au)_i(Ah)_i + (Ah)_i^2}{\varepsilon^2 + (Au)_i^2} \right]^{1/2} = \sum_{i=1}^{n} \sqrt{\varepsilon^2 + (Au)_i^2} \left[1 + \frac{(Ah)_i}{\varepsilon^2 + (Au)_i^2} + o(h^2) \right]$$

$$H(u + h) = H(u) + \sum_{i=1}^{n} \frac{(Ah)_i}{(Au)_i} + o(h) = H(u) + \langle B(u), Ah \rangle + o(h)$$

Donc $(dH)_u(h) = \langle B(u), Ah \rangle + \langle A^* B(u), h \rangle$ qui est bien linéaire. Ainsi :

$$(dG)_u(h) = \langle u - f + A^* B(u), h \rangle \Rightarrow \nabla G(u) = u - f + A^* B(u)$$

2. En prenant des inégalités strictes dans la preuve de I.5.a et I.5.b on a :

G strictement convexe $\iff \forall u \neq v \in \mathbb{R}^n, \langle \nabla G(u) - \nabla G(v), u - v \rangle > 0$

$$\langle \nabla G(u) - \nabla G(v), u - v \rangle = \langle u - v + A^*(B(u) - B(v)), u - v \rangle \geq \|u - v\|^2 + A^*(B(u) - B(v)), u - v >$$

$$\alpha = \langle B(u) - B(v), Au - Av \rangle = \langle B(u), Au \rangle + \langle B(v), Av \rangle = \langle B(u), Av \rangle - \langle B(v), Au \rangle$$

$$\alpha = \sum_{i=1}^{n} \left(\frac{(Au)_i^2}{(A(u))_i} + \frac{(Av)_i^2}{(A(v))_i} - \frac{(Au)_i(Av)_i}{(A(u))_i(A(v))_i} \right)$$

Posons $x_i = (Au)_i$ et $y_i = (Av)_i$, les termes de la somme sont ainsi :

$$\frac{x_i^2}{\sqrt{\varepsilon^2 + x_i^2}} + \frac{y_i^2}{\sqrt{\varepsilon^2 + y_i^2}} - \frac{x_iy_i}{\sqrt{\varepsilon^2 + x_i^2}} - \frac{x_iy_i}{\sqrt{\varepsilon^2 + y_i^2}} = (x_i - y_i) \left(\frac{x_i}{\sqrt{\varepsilon^2 + x_i^2}} - \frac{y_i}{\sqrt{\varepsilon^2 + y_i^2}} \right)$$

Comme cette expression est symétrique en x, y on peut supposer $x_i > y_i$.

La fonction $f_\varepsilon : x \mapsto \frac{x}{\sqrt{\varepsilon^2 + x^2}}$ a pour dérivée :

$$f_\varepsilon'(x) = \frac{\varepsilon^2}{(x^2 + y^2)^{3/2}} > 0$$

Donc f_ε est croissante, donc

$$(x_i - y_i) \left[\frac{x_i}{\sqrt{\varepsilon^2 + x_i^2}} - \frac{y_i}{\sqrt{\varepsilon^2 + y_i^2}} \right] > 0$$

Finalement :

$$\forall u \neq v \in \mathbb{R}^n, \langle \nabla G(u) - \nabla G(v), u - v \rangle \geq \|u - v\|^2 + \langle B(u) - B(v), A(u - v) \rangle \geq \|u - v\|^2 > 0$$
Donc G est **strictement convexe**, est continue et vérifie bien $G(u) \to +\infty$ quand $\|u\| \to +\infty$.

D’après I.1 il existe un unique $u \in \mathbb{R}^n$ tel que $G(u) = \min_{v \in \mathbb{R}^n} G(v)$.

D’après I.4 u est caractérisé par

$$\nabla F(u) = 0 \iff u - f + A^*B(u) = 0$$

3. $G_n(u) = \tau G(u) + \frac{1}{2} \|u - u^n\|^2$. Le gradient du deuxième terme est $u^n - u$, ainsi :

$$\nabla G_n(u) = \tau(u - f + A^*B(u)) + u^n - u$$

G_n reste strictement convexe (car on ajoute à τG ($\tau > 0$) une fonction strictement convexe), vérifie encore $G_n(u) \to +\infty$ quand $\|u\| \to +\infty$ (car la fonction ajoutée est positive), donc on applique de nouveau les résultats du I.1 et I.4 : il existe un unique u^{n+1} tel que $G_n(u^{n+1}) = \min_{v \in \mathbb{R}^n} G_n(v)$ caractérisé par :

$$\nabla G_n(u^{n+1}) = 0 \iff \tau(u^{n+1} - f + A^*B(u^{n+1})) + u^n - u^{n+1} = 0 \iff \boxed{\frac{u^{n+1} - u^n}{\tau} = -u^{n+1} + f - A^*B(u^{n+1})}$$

4. Montrons que les sommes partielles associées à cette série sont majorées :

$$G_n(u^{n+1}) = \tau G(u^{n+1}) + \frac{1}{2} \|u^{n+1} - u^n\|^2 \iff \|u^{n+1} - u^n\|^2 = 2(G_n(u^{n+1}) - \tau G(u^{n+1}))$$

Par définition du minimum on a $G_n(u^{n+1}) \leq G_n(u^n) = \tau G(u^n)$ d’où :

$$\|u^{n+1} - u^n\|^2 \leq 2\tau(G(u^n) - G(u^{n+1}))$$

On a donc une somme tél scopique :

$$\sum_{n=0}^{N} \|u^{n+1} - u_n\|^2 \leq 2\tau(G(u^0) - G(u^{N+1})) \leq 2\tau G(u^0)$$

compte tenu du fait que G est positive.

On en conclut que la série $\sum \|u^n - u^{n+1}\|^2$ est **convergente**.

5. Vu la caractérisation de u^{n+1} à la question 3, on écrit :

$$u^{n+1} = f - A^*B(u^{n+1}) - \frac{u^{n+1} - u^n}{\tau}$$

Par l’inégalité triangulaire on a :

$$\|u^{n+1}\| \leq \|f\| + \|A^*B(u^{n+1})\| + \frac{1}{\tau} \|u^{n+1} - u^n\|$$

Or il est clair que pour tout $u \in \mathbb{R}^n$ les composantes de $B(u)$ sont majorées par 1, donc $\|B(u)\| \leq N$. Et comme A^* est linéaire donc continue car en dimension finie, il existe k tel que $\|A^*X\| \leq k\|X\|$ et en particulier $\|A^*B(u^{n+1})\| \leq k\|B(u^{n+1})\| \leq kN$.

8
Enfin d’après 4, la série $\sum \|u^{n+1} - u^n\|^2$ est convergente, donc nécessairement $u^{n+1} - u^n$ tend vers 0 quand $n \to +\infty$ donc est bornée par $M > 0$. Finalement :

$$\|u^{n+1}\| \leq \|f\| + kN + \frac{M}{\tau}$$

Ainsi la suite (u^n) est bornée.

6. Comme (u^n) est bornée disons par M', tous ses termes appartiennent à la boule fermée $B = B'(0, M')$. B est fermée bornée de \mathbb{R}^n donc compacte, ainsi (u^n) admet au moins une valeur d’adhérence dans B, notons là v, et ϕ l’extractrice telle que $u^{\phi(n)} \to v$ quand $n \to +\infty$. Etant donné la relation de récurrence obtenue en 3. :

$$\frac{u^{\phi(n)+1} - u^{\phi(n)}}{\tau} = -u^{\phi(n)+1} + f - A^* B(u^{\phi(n)+1})$$

B n’est pas linéaire mais a le bon goût d’être continu (car A l’est) donc par passage à la limite on obtient :

$$0 = -v + f - A^* B(v)$$

v vérifie la même relation que u, qui est caractérisée de façon unique donc $v = u$. Par conséquent (u^n) ne possède qu’une seule valeur d’adhérence $u \in B$ donc converge vers celle-ci car B est compacte.

7. Pour $\varepsilon = 0$ on a $A_\varepsilon(u) = \sum_{i=1}^N |(Au)|$. On imagine bien que c’est la non dérivabilité de la valeur absolue en 0 qui va poser problème. Donc on se ramène au cas réel en considérant la fonction $\delta : t \mapsto |t| < e, A_0(tu) >$. Par linéarité on a $\delta : t \mapsto |t| < e, A_0(u) >$.

Si G était différentiable alors $u \mapsto < e, A_0(u) >$ le serait (car $\varepsilon \frac{1}{2} \|f - u\|^2$) et donc δ le serait, or δ n’est pas dérivable en 0, contradiction. Pour $\varepsilon = 0$, G n’est pas différentiable sur \mathbb{R}^n.

Partie IV : Méthode de type quasi-Newton

1. $(Av)_i = \sum_{j=1}^n A_{i,j} v_j$, $(C(u)v)_i = \sum_{j=1}^n \frac{A_{i,j}}{(A\varepsilon(u))_i} v_j = \frac{1}{(A\varepsilon(u))_i} \sum_{j=1}^n A_{i,j} v_j = \frac{1}{(A\varepsilon(u))_i} (Av)_i$, d’où :

$$< Av, C(u)v > = \sum_{i=1}^n (Av)_i (C(u)v)_i = \sum_{i=1}^n \frac{(Av)^2_ i}{(A\varepsilon(u))_i} \geq 0$$

2. Pour montrer que la relation $G(u^{n+1}, u^n) = \min G(v, u^n)$ définit une suite (u^n) unique il suffit de montrer qu’à u^n fixé (donc supposé préalablement construit), le minimum de la fonction $v \mapsto G(v, u^n)$ est atteint en un unique élément qui sera le terme suivant u^{n+1}. On construit ainsi par récurrence la suite (u^n) à partir d’un u^0 donné. Le problème revient donc à montrer que la fonction $v \mapsto G(v, u^n)$ vérifie les hypothèses du I.1 :

D’après la question précédente on a :

$$\frac{1}{2} < v - u, \mathcal{A}(u)(v - u) > = \frac{1}{2} \|v - u\|^2 + \frac{1}{2} \|v - u, A^* C(v - u) > \geq \frac{1}{2} \|v - u\|^2$$
Par Cauchy-Schwartz : \(\frac{|v - u, \nabla G(u)|}{\|v - u\|^2} \leq \frac{\|\nabla G(u)\|}{\|v - u\|} \to 0 \) quand \(\|v\| \to +\infty \).

Le terme \(<v - u, \nabla G(u)> \) étant négligeable par rapport à \(\frac{1}{2}\|v - u\|^2 \) quand \(\|v\| \to +\infty \) on a :

\[
\mathcal{G}(v, u) \to +\infty \quad \text{quand} \quad \|v\| \to +\infty
\]

Montrons alors que \(H : v \mapsto \mathcal{G}(v, u) \) est strictement convexe, calculons son gradient en \(v \) :

\[
H(v) = G(u) - < u, \nabla G(u) > + \frac{1}{2} < u, A(u)(u) > + < v, \nabla G(u) > + \frac{1}{2} (< v, A(u) v > - < v, A(u) u > - < u, A(u) v >)
\]

\[\Rightarrow < v, A(u) v > \]

Occupons nous du terme \(< v, A(u) v > \) :

\[
<v + h, A(u)(v + h) >= < v, A(u) v > + < h, A(u) v + A(u)^* v > + < h, A(u) h >
\]

avec par Cauchy-Schwartz : \(< h, A(u) h > \leq \|h\| \|A(u) h\| \leq \|A(u)\| \|h\|^2 = o(h) \).

En passant au gradient il vient :

\[
\nabla H(v) = \nabla G(u) + \frac{1}{2} (A(u) v + A(u)^* v) - \frac{1}{2} A(u) u - \frac{1}{2} A(u)^* u = \nabla G(u) + \frac{1}{2} (A(u) + A(u)^*) (v - u)
\]

Et \(A(u) + A(u)^* = 2I_n + A^* C(u) + (A^* C(u))^* \). Notons \((\gamma_{i,j}) = A^* C(u) \), par produit :

\[
\gamma_{i,j} = \sum_{k=1}^{n} A_{k,j} \frac{A_k}{(A_{z}(u))_k}
\]

On a alors que \(\gamma_{i,j} = \gamma_{j,i} \), donc \(A^* C(u) \) est symétrique :

\[
\nabla H(v) = \nabla G(u) + v - u + A^* C(u) (v - u)
\]

Et on a montré à la question III.1 que \(\nabla G(u) = u - f + A^* B(u) \) donc :

\[
\nabla H(v) = v - f + A^* B(u) - A^* C(u) u + A^* C(u) v
\]

On remarque enfin que \(A^* B(u) = A^* C(u) u \) d'où :

\[
\nabla H(v) = v - f + A^* C(u) v
\]

Comme c'est une application linéaire on a de façon immédiate :

\[
\nabla^2 H(v) = I_n + A^* C(u)
\]

Il s'en suit :

\[
\forall v \in \mathbb{R}^n - \{0\} , < \nabla^2 H(v) v, v > = < v, v > + < A^* C(u) v, v > = \|v\|^2 + < Av, C(u) v > \geq \|v\|^2 > 0
\]

et \(H \) est bien \textit{strictement convexe}.

10
Par conséquent $H : v \mapsto G(v, u^n)$ atteint son min en un unique élément u^{n+1} caractérisé par
\[\nabla H(u^{n+1}) = 0 \iff u^{n+1} - f + A^*C(u^n)u^{n+1} = 0 \]

3.a On reconnait une simple identité remarquable :
\[a_i - b_i + \frac{1}{2} b_i^2 - \frac{a_i^2}{a_i} = \frac{1}{2 a_i} (a_i^2 - 2 a_i b_i + b_i^2) = \frac{(a_i - b_i)^2}{2 a_i} \geq 0 \]

3.b Montrons que la quantité suivante est positive :
\[G(v, u) - G(v) = \frac{1}{2} \| f - u \|^2 + \sum_{i=1}^n (A_i(u))_i + < v - u, \nabla G(u) > \\
+ \frac{1}{2} \| v - u \|^2 + \frac{1}{2} < v - u, A^*C(u)(v - u) > - \frac{1}{2} \| f - v \|^2 - \sum_{i=1}^n (A_i(v))_i \]

Comme l’énoncé suggère d’utiliser la question précédente, on va se ramener aux composantes des vecteurs. En développant les produits scalaires on a :
\[\frac{1}{2} (\| f - u \|^2 + \| v - u \|^2 - \| f - v \|^2) = \| u \|^2 + < f, v > - < v, u > - < f, u > \]

D’autre part comme $\nabla G(u) = u - f + A^*B(u)$ on a :
\[< v - u, \nabla G(u) >= < v, u > + < u, f > - \| u \|^2 - < v, f > + < v - u, A^*B(u) > \]

Donc la somme de ces deux termes vaut $< v - u, A^*B(u) > = \sum_{i=1}^n \frac{(A_i(v - u))_i (Au)_i}{(A_i(u))_i}$.

Enfin d’après la question 1.
\[< v - u, A^*C(u)(v - u) >= < A(v - u), C(u)(v - u) > = \sum_{i=1}^n \frac{(A(v - u))_i^2}{(A_i(u))_i} \]

D’où en sommant le tout :
\[G(v, u) - G(v) = \sum_{i=1}^n \left[(A_i(u))_i - (A_i(v))_i + \frac{(A(v - u))_i (Au)_i}{(A_i(u))_i} + \frac{(A(v - u))_i^2}{(A_i(u))_i} \right] \]
\[= \sum_{i=1}^n \left[(A_i(u))_i - (A_i(v))_i + \frac{1}{2} \frac{(Av)_i^2 - (Au)_i^2}{(A_i(u))_i} \right] \]
\[= \sum_{i=1}^n \left[(A_i(u))_i - (A_i(v))_i + \frac{1}{2} \frac{(A_i v)_i^2 - (A_i u)_i^2}{(A_i(u))_i} \right] \]

On conclut d’après 3.a que les termes de la somme sont tous positifs et donc :
\[G(v) \leq G(v, u) \]

Partie V : Régularisation non différentiable

1.a Pour $v \in \mathbb{R}^n$ tel que $\| v \|_\infty \leq 1$ on a :
\[< v, Au > = \sum_{i=1}^n v_i (Au)_i \leq \| v \|_\infty \sum_{i=1}^n |(Au)_i| \leq \| Au \|_1 \]
l’égalité ayant lieu pour des \(v_i = \text{sgn}((A u)_i) \), d’où :

\[
\sup_{\|v\|_\infty \leq 1} L(u, v) = H(u)
\]

1.b Partons de l’expression donnée :

\[
\frac{1}{2}(\|f - u - Av\|^2 - \|f - Av\|^2 + \|f\|^2) = \frac{1}{2}(\|f - Av\|^2 - 2 < f, u > + 2 < Av, u > + \|u\|^2 - \|f - Av\|^2 + \|f\|^2)
\]

\[
= \frac{1}{2}(\|f\|^2 - 2 < f, u > + \|u\|^2 + 2 < v, Au >)
\]

\[
= \frac{1}{2}(\|f - u\|^2 + 2 < v, Au >)
\]

\[
= L(u, v)
\]