Analytical Reconstructions of Regions of Interest in Medical Imaging

Kévin Polisano

Supervised by : Laurent Desbat

09/18/2012

1/1/C

1 / 45

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012

- Context
- Topic
- Principles of tomography and motivation
- 2 Theory
 - State of the art
 - Incomplete data reconstruction
- Implementation
 - Acquision
 - Rebinning
 - Reconstruction
 - Results and analysis
- 5 Conclusion
 - Personal record
 - Future improvements

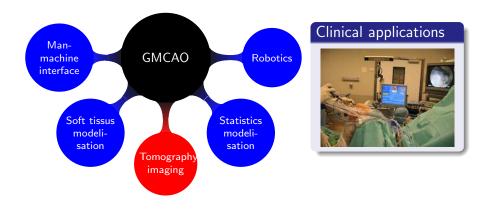
Theory Implementation Results and analysis Conclusion Context Topic Principles of tomography and motivation

Contents

- Context
- Topic
- Principles of tomography and motivation

3 Implementation

4 Results and analysis



Theory Implementation Results and analysis Conclusion

Context

Topic Principles of tomography and motivation

Introduction Context

Kévin Polisano

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 4 / 45

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Theory Implementation Results and analysis Conclusion Context Topic Principles of tomography and motivation

Introduction

- To discover the field of Computed Tomography Imaging
- To improve the current way of reconstruction of images
- To reduce the X-ray exposure by decreasing the trajectory of the scanner around the patient
- To implement a first version in Matlab which could be reused then by Surgivisio

Theory Implementation Results and analysis Conclusion Context Topic Principles of tomography and motivation

Introduction

- To discover the field of Computed Tomography Imaging
- To improve the current way of reconstruction of images
- To reduce the X-ray exposure by decreasing the trajectory of the scanner around the patient
- To implement a first version in Matlab which could be reused then by Surgivisio

Theory Implementation Results and analysis Conclusion Context Topic Principles of tomography and motivation

Introduction

- To discover the field of Computed Tomography Imaging
- To improve the current way of reconstruction of images
- To reduce the X-ray exposure by decreasing the trajectory of the scanner around the patient
- To implement a first version in Matlab which could be reused then by Surgivisio

Theory Implementation Results and analysis Conclusion Context Topic Principles of tomography and motivation


Introduction

- To discover the field of Computed Tomography Imaging
- To improve the current way of reconstruction of images
- To reduce the X-ray exposure by decreasing the trajectory of the scanner around the patient
- To implement a first version in Matlab which could be reused then by Surgivisio

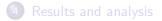
Theory Implementation Results and analysis Conclusion Context Topic Principles of tomography and motivation

Introduction Principles of tomography

< □ > < □

State of the art Incomplete data reconstruction

Contents

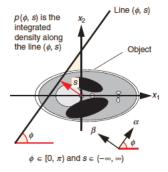


Introduction

2 Theory

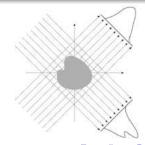
- State of the art
- Incomplete data reconstruction

3 Implementation


5 Conclusion

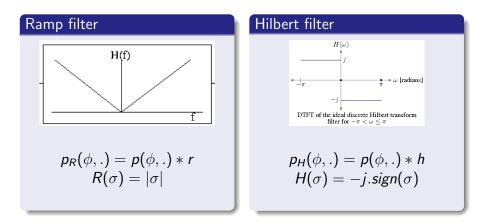
Kévin Polisano

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 7 / 45


State of the art Incomplete data reconstruction

Mathematical formulation Projection

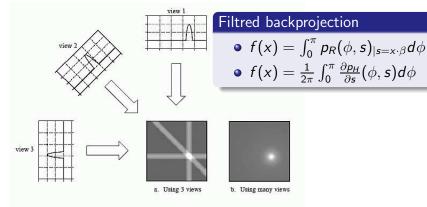
Projection


$$p(\phi, s) = \int_{-\infty}^{\infty} f(r\alpha + s\beta) dr$$
 for $\phi \in (0, \pi), s \in (-\infty, \infty)$

State of the art Incomplete data reconstruction

Mathematical formulation

Filters applied to projections


Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 9 / 45

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

State of the art Incomplete data reconstruction

Mathematical formulation

Filtred backprojection

FIGURE 25-16

Backprojection. Backprojection reconstructs an image by taking each view and *smearing* it along the path it was originally acquired. The resulting image is a blurry version of the correct image.

State of the art Incomplete data reconstruction

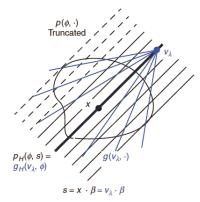
Parallel geometry problems

Some problems with parallel geometry

- The X-ray source doesn't cast parallel beams
- The parallel formulas require all projections $p(\phi, s)$
- This geometry is not adapted to data truncation

Work flow

- To adopt a new geometry called fanbeam geometry
- Rebinning truncated parallel projections into fanbeam
- To apply Hilbert equality to evaluate $p(\phi, s)$


- + E +

Theory Results and analysis

Incomplete data reconstruction

Fanbeam geometry

Projection and Hilbert equality

Projection

$$g(\lambda, \phi) = \int_0^\infty f(v(\lambda) + I\alpha) dI$$

$$\alpha = (\cos \phi, \sin \phi)$$

$$\beta = (-\sin \phi, \cos \phi)$$

Hilbert equality

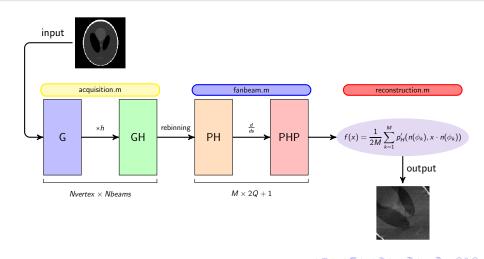
$$p_H(\phi, s) = g_H(v_\lambda, \phi), s = v_\lambda \cdot \beta$$

Acquision Rebinning Reconstruction


Contents

2 Theory

Implementation

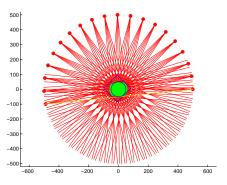

- Acquision
- Rebinning
- Reconstruction

Acquision Rebinning Reconstruction

Global vision of the architecture

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 14 / 45

Acquision Rebinning Reconstruction


Focus on the CT imaging process acquisition.m

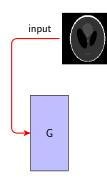
A (10) A (10) A (10)

Acquision Rebinning Reconstruction

Focus on the CT imaging process acquisition.m

Data required

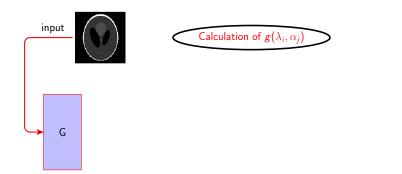
- image's position
- *Rtraj* = 150
- Nvertex = 512
- Nbeams = 1024
- $\gamma_m = \arcsin(\frac{FOV}{Rtraj}) \simeq 20^\circ$


• *FOV* = 50

• integrale discretization=256

A (1) > A (2) > A

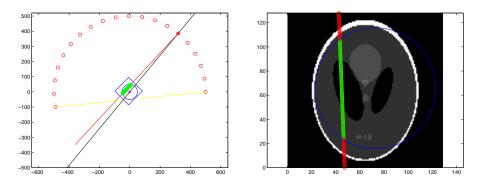
Acquision Rebinning Reconstruction


Focus on the CT imaging process acquisition.m

-

Acquision Rebinning Reconstruction

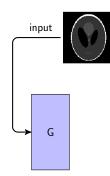
Focus on the CT imaging process acquisition.m


< 47 ▶

-

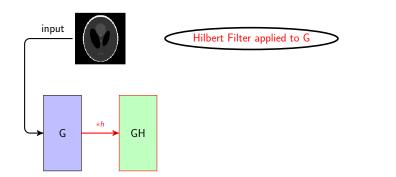
Implementation Results and analysis

Acquision


Focus on the CT imaging process acquisition.m

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 19 / 45

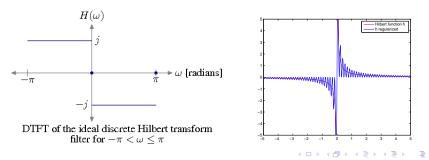
Acquision Rebinning Reconstruction


Focus on the CT imaging process acquisition.m

< (T) >

Acquision Rebinning Reconstruction

Focus on the CT imaging process acquisition.m

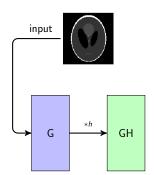


Acquision Rebinning Reconstruction

Filtered projections

Numerical problems

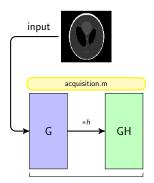
- Calculation of $g_H = g * h$ unstable around zero
- Solution => regularization



Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012

22 / 45

Acquision Rebinning Reconstructior

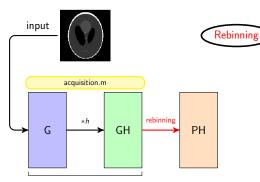

Focus on the CT imaging process fanbeam.m

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 23 / 45

Acquision **Rebinning** Reconstruction

Focus on the CT imaging process fanbeam.m

 $\mathit{Nvertex} \times \mathit{Nbeams}$

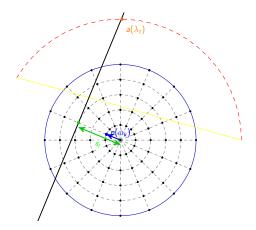

Kévin Polisano

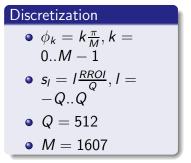
Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 24 / 45

-

Acquision Rebinning Reconstruction

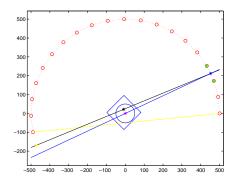
Rebinning : fanbeam geometry to parallel geometry fanbeam.m


Nvertex × Nbeams


Kévin Polisano

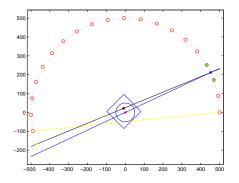
Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 25 / 45

Acquision **Rebinning** Reconstruction


Rebinning : fanbeam geometry to parallel geometry Discretized plan

Acquision Rebinning Reconstruction

Rebinning : fanbeam geometry to parallel geometry The rebinning method step by step



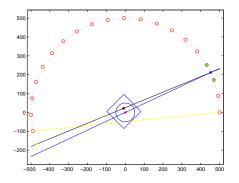
Steps

- Intersection $a(\lambda_t)$ of $(n(\phi_k), s_l)$ with path
- Determine the angle α_t between two lines
- 3 Give a bound of $\lambda_i \leq \lambda_t \leq \lambda_{i+1}$ and $\alpha_i \leq \alpha_t \leq \alpha_{i+1}$

Acquision Rebinning Reconstruction

Rebinning : fanbeam geometry to parallel geometry The rebinning method step by step

Steps

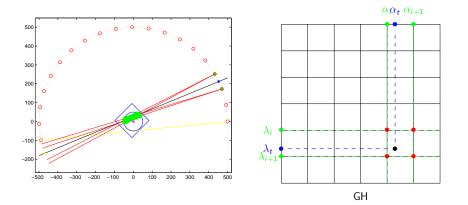

- Intersection $a(\lambda_t)$ of $(n(\phi_k), s_l)$ with path
- 2 Determine the angle α_t between two lines

→ Ξ ►

Give a bound of $\lambda_i \leq \lambda_t \leq \lambda_{i+1}$ and $\alpha_i \leq \alpha_t \leq \alpha_{i+1}$

Acquision Rebinning Reconstruction

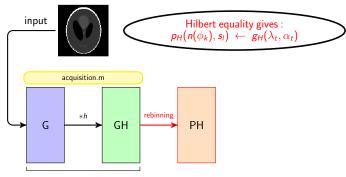
Rebinning : fanbeam geometry to parallel geometry The rebinning method step by step



Steps

- Intersection $a(\lambda_t)$ of $(n(\phi_k), s_l)$ with path
- 2 Determine the angle α_t between two lines
- 3 Give a bound of $\lambda_i \leq \lambda_t \leq \lambda_{i+1}$ and $\alpha_i \leq \alpha_t \leq \alpha_{i+1}$

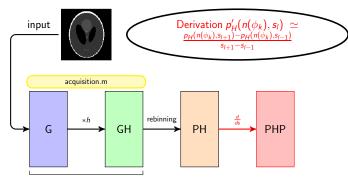
Acquision Rebinning Reconstruction


Rebinning : fanbeam geometry to parallel geometry Bilinear interpolation of $g_H(\lambda_t, \alpha_t)$

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 28 / 45

Acquision Rebinning Reconstruction

Rebinning : fanbeam geometry to parallel geometry fanbeam.m

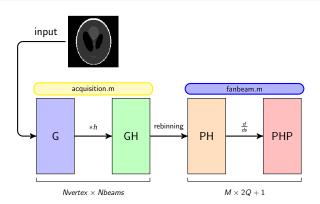

 $\mathit{Nvertex} \times \mathit{Nbeams}$

Kévin Polisano

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 29 / 45

Acquision Rebinning Reconstruction

Rebinning : fanbeam geometry to parallel geometry fanbeam.m

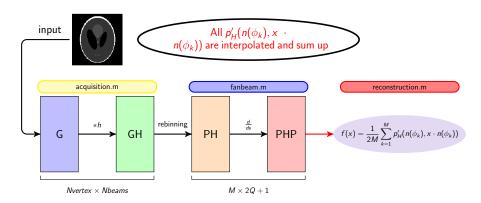

Nvertex × Nbeams

Kévin Polisano

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 30 / 45

Acquision Rebinning Reconstruction

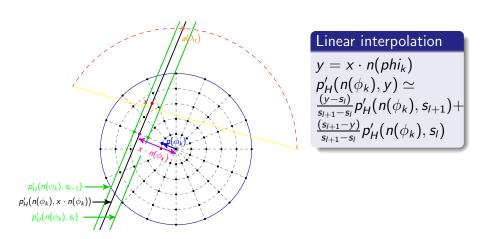
Rebinning : fanbeam geometry to parallel geometry fanbeam.m



Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 31 / 45

Acquision Rebinning Reconstruction

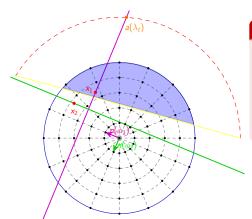
Reconstruction


reconstruction.m

-

Acquision Rebinning Reconstruction

Reconstruction



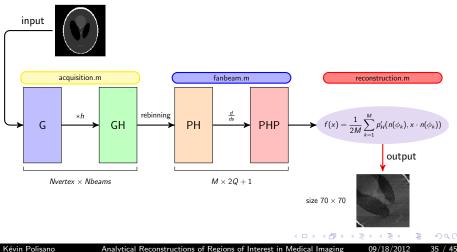
Kévin Polisano

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 33 / 45

Acquision Rebinning Reconstruction

Reconstruction Condition of accurate reconstruction

Fanbeam data condition


The point *x* can be reconstructed from complete fanbeam projections provided a fanbeam vertex can be found on each line passing through *x*

Implementation Results and analysis

Reconstruction

Reconstruction

reconstruction.m

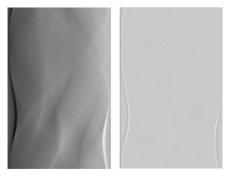
Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012

5 Conclusion

Kévin Polisano

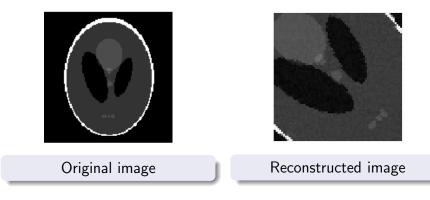
Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 36 / 45

CT imaging results acquisition.m : sinogram and filtred sinogram

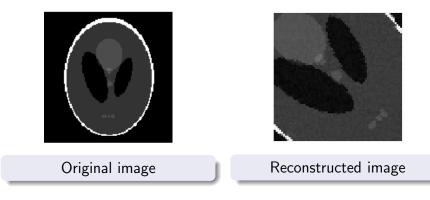


Fanbeam measures

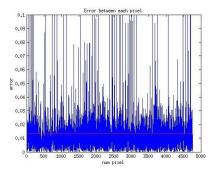
- On the top the sinogram $G = (g(\lambda_i, \alpha_j))_{i,j}$
- On the bottom the filtred sinogram after applying the Hilbert filter h,
 GH = (g_H(λ_i, n(α_j)))_{i,j}

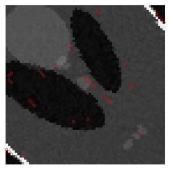

Rebinning results

Parallel geometry


- On the left $PH = (p_H(n(\phi_k), s_l))_{k,l}$
- On the right $PHP = (p'_H(n(\phi_k), s_l))_{k,l}$

Reconstruction results reconstruction.m : reconstructed image display


Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 39 / 45


Reconstruction results reconstruction.m : reconstructed image display

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 40 / 45

Reconstruction results Error calculation

mean/pixel	standart deviation	quadratic	max	$> 10^{-1}$
$1, 33.10^{-2}$	$2, 6.10^{-2}$	2,01	0,62	38/4900

41 / 45

Personal record Future improvements

Contents

2 Theory

- Implementation
- 4 Results and analysis
- 5 Conclusion
 - Personal record
 - Future improvements

Personal record Future improvements

Scientific point of view

- Discover of a new field of science applied to health
- Learn a new mathematical theory and its recent advances
- Fight against numerical problems
- Acceleration of the execution of programs

Human point of view

- Pluridisplinary within research teams
- Partnership with companies
- Business dimensions

45

Personal record Future improvements

Improvements

- Report will be use to teaching aid
- C++ implementation, real time
- Adaptation of this algorithm in 3D reconstruction
- Extent to fanbeam truncated data \Rightarrow virtual fanbeam
- Integration in Surgivisio's softwares

Personal record Future improvements

Thank you for your attention

Analytical Reconstructions of Regions of Interest in Medical Imaging 09/18/2012 45 / 45