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Based on these two following articles :

Robust Uncertainty Principle : Exact reconstruction from highly incomplete frequency 
information (2004)

An introduction to compressive sampling (2008)

&
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Source : Ron De Vore & Richard Baraniuk 3



Digital Data Acquisition

• Foundation:  Shannon sampling theorem
“if you sample densely enough
(at the Nyquist rate), you can 
perfectly reconstruct the 
original data”

time space

Source : Ron De Vore & Richard Baraniuk 4



s⇤(t) = Ts(t) · �T (t)

ŝ⇤(f) = ŝ(f) ⇤
1X

n=�1
�(f � n/T )

ŝ⇤(f) =
1X

n=�1
ŝ(f � n/T )�(f � n/T )

Nyquist–Shannon sampling theorem 
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Sensing 

Source : Gabriel Peyré 6



Sensing by Sampling

• Long-established paradigm for digital data acquisition
– uniformly sample data at Nyquist rate (2x Fourier bandwidth) 

sample too 
much 
data!

Source : Ron De Vore & Richard Baraniuk 7



Sensing by Sampling

• Long-established paradigm for digital data acquisition
– uniformly sample data at Nyquist rate (2x Fourier bandwidth)
– compress data (signal-dependent, nonlinear)

compress transmit/store

receive decompress

sample

sparse
wavelet

transform

Source : Ron De Vore & Richard Baraniuk 8



Classical Image Representation: DCT
• Discrete Cosine Transform (DCT)

Basically a real-valued Fourier transform (sinusoids)

• Model: most of the energy is at low frequencies

• Basis for JPEG image compression standard

• DCT approximations: smooth regions great, edges blurred/ringing

Source : Justin Romberg & Michael Wakin 9



Modern Image Representation: 2D Wavelets

• Sparse structure: few large coeffs, many small coeffs

• Basis for JPEG2000 image compression standard

• Wavelet approximations: smooths regions great, edges much sharper

• Fundamentally better than DCT for images with edges

Source : Justin Romberg & Michael Wakin 10



Wavelets and Images

1 megapixel image

wavelet coeffs (sorted)
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Wavelet Approximation
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1 megapixel image 25k term approx B-term approx error

• Within 2 digits (in MSE) with ⇡ 2.5% of coeffs

• Original image = f , K-term approximation = f
K

kf � f
K

k2 ⇡ .01 · kfk2

Source : Justin Romberg & Michael Wakin 12



Compressive Sensing

• Directly acquire “compressed” data

• Replace samples by more general “measurements”

compressive sensing transmit/store

receive reconstruct

Source : Ron De Vore & Richard Baraniuk 13



Compressive Sensing (CS)

• Recall Shannon/Nyquist theorem
– Shannon was a pessimist
– 2x oversampling Nyquist rate is a worst-case bound 

for any bandlimited data
– sparsity/compressibility irrelevant
– Shannon sampling is a linear process while 

compression is a nonlinear process

• Compressive sensing

– new sampling theory that leverages compressibility

– based on new uncertainty principles

– randomness plays a key role

Source : Ron De Vore & Richard Baraniuk 14



Sensing 

Source : Gabriel Peyré 15



Coded Acquisition
• Instead of pixels, take linear measurements

y1 = hf, �1i, y2 = hf, �2i, . . . , y
M

= hf, �
M

i

y = �f

• Equivalent to transform domain sampling,
{�

m

} = basis functions

• Example: big pixels

y
m

= h
,

i

Source : Justin Romberg & Michael Wakin 16



Coded Acquisition
• Instead of pixels, take linear measurements

y1 = hf, �1i, y2 = hf, �2i, . . . , y
M

= hf, �
M

i

y = �f

• Equivalent to transform domain sampling,
{�

m

} = basis functions

• Example: line integrals (tomography)

y
m

= h
,

i
Source : Justin Romberg & Michael Wakin 17



Coded Acquisition
• Instead of pixels, take linear measurements

y1 = hf, �1i, y2 = hf, �2i, . . . , y
M

= hf, �
M

i

y = �f

• Equivalent to transform domain sampling,
{�

m

} = basis functions

• Example: sinusoids (MRI)

y
m

= h
,

i

Source : Justin Romberg & Michael Wakin 18



Source : Gabriel Peyré

Random sensing
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Algebraic formulation

 Let define the sensing matrix as the following orthobasis

 

 But one can recover the object if it has a sparse  
representation in another basis functions    which  

is orthogonal and incoherent with the basis    .            

� =
�
�1 �2 . . . �m

�T 2 Mm⇥n

The process of recovering f 2 Rn
from y = �f 2 Rm

is ill-posed in general when m < n

 
�
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f 2 Rn
can be extended in a given basis  = [ 1 2 · · · n]

f(t) =

nX

i=1

xi i(t)

in which a small number of coe�cients xi =< f, i > are nonzero elements

Sparsity
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Incoherence

Coherence between the sensing basis � and the representation basis  is

µ(�, ) =
p
n · max

16k,j6n
| < �k, j > |

µ(�, ) 2 [1,
p
n] since 8j,

nX

k=1

| < �k, j > |2 = k jk2 = 1

�k(t) = �(t� k) (spikes basis) and  j(t) = n�1/2e�i2⇡jt/n
(Fourier basis)

Examples

µ(�, ) = 1 Maximal incoherence

•  � = Noiselets,  = Haar ) µ(�, ) =
p
2

•  � = Noiselets,  = Daubechies D4, D8 ) µ(�, ) = 2.2, 2.9
•  � = Random matrix,  = fixed basis ) E[µ(�, )] =

p
2 log n

'k i.i.d N (0, 1), ±1, exp(i2⇡!kt) ...
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yk =< f,'k > 8k 2 M , y = �f = � x with x sparse

The reconstruction f

⇤
is given by f

⇤
=  x

⇤
where x

⇤
is solution of

min

x̃2Rn
kx̃k

`1 subject to y = � x

Recovery

Fix f 2 Rn
and suppose that the coe�cient sequence x of f in the basis

 is S�sparse. Select m measurements in the � domain uniformly at random.

Then if

m > C · µ2
(�, ) · S · log(n/�)

the solution of the convex optimization is exact with probability 1� �.

Théorème 1

Main results
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Motivations

{p✓k(t)}06k<m

�f = {f̂ [!]}!2⌦

Fourier Slide Theorem :

Partial measurements :

Equivalent to :

min kgkBV subject to ĝ(!) = ˆf(!) for all ! 2 ⌦

Filtred backprojection

Convex minimization
VS
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f̂(k) =
N�1X

t=0

f(t)e�i!kt, !k =
2⇡k

N
, k = 0, 1, . . . , N � 1

Key points

Suppose we are only given

ˆf |⌦ sampled in some partial subset ⌦ ⇢ ZN

Suppose f is supported on a small subset S ⇢ ZN : f =

X

t2S

↵t�t

They proved that f can be reconstructed from

ˆf |⌦ if |S| 6 |⌦|/2.
In principle, we can recover f exactly by solving the optimization

(P0) min kgk`0 , ĝ|⌦ =

ˆf |⌦

for |⌦| ⇠ N/2 ) 4

N · 3�3N/4
subsets to check !Combinatorial problem

Instead one can solved the convex problem

(P1) min kgk`1 :=

X

t2ZN

|g(t)|, ĝ|⌦ =

ˆf |⌦

(P0) and (P1) are equivalent for an overwhelming percentage of the choices

for S and ⌦ with |S| 6 C · |⌦|/ logN

 
 

 

 
 

Hypothesis

(N prime)
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For almost every ⌦

There exist sets ⌦ and functions f for which the `1-minimization procedure

does not recover f correctly, even if |supp(f)| is much smaller than |⌦|.
 

Dirac’s comb

They proved that f can be reconstructed from

ˆf |⌦ if |S| 6 |⌦|/2. (N prime)

for N prime, FS!⌦f :=

ˆf |⌦ for all f 2 `2(S) is injective when |S| 6 |⌦|
hold for non-prime if S,⌦ are not subgroups of ZN
⌦

c
must not content a large interval (mostly the case when chosen randomly)

Measurements : ⌦

⇤
all frequencies but the multiples of

p
N , namely |⌦⇤|

f̂ |⌦⇤ = 0 Reconstruction is identically zero

|S|+ |⌦| = 2
p
N
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For almost every ⌦

There exist sets ⌦ and functions f for which the `1-minimization procedure

does not recover f correctly, even if |supp(f)| is much smaller than |⌦|.
 

Box signals

They proved that f can be reconstructed from

ˆf |⌦ if |S| 6 |⌦|/2. (N prime)

for N prime, FS!⌦f :=

ˆf |⌦ for all f 2 `2(S) is injective when |S| 6 |⌦|
hold for non-prime if S,⌦ are not subgroups of ZN
⌦

c
must not content a large interval (mostly the case when chosen randomly)

•  sample size N large

f = �T where T = {t : �N�0.01 < t < N0.01}•  
⌦ = {k : N/3 < k < 2N/3}•  
h a function whose Fourier transform

ˆh is a non-negative bump function on

the interval {k : �N/6 < k < N/6} which equals 1 when �N/12 < k < N/12
•  

Fourier transform of |h(t)|2 vanishes in ⌦

|h(t)|2 rapidly decreases away from t = 0 : |h(t)|2 = O(N�100
) for t /2 T

|h(0)|2 > c for some absolute constant c > 0

F(f � ✏|h|2) = F(f) in ⌦ and kf � ✏|h|2k`1 < kfk`1
27
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Classical arguments show that f is the unique minimizer of (P1) i↵ :

Relation to the uncertainty principle

30



Robust uncertainty principle
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(P0) and (P1) are equivalent for an overwhelming percentage of the choices

for S and ⌦ with |S| 6 C · |⌦|/ logN

Strategy for proving

Reformulation with duality theory 

Linear program (P1) Lagrangien

t 2 S

t 2 S
t /2 S

t 2 Sc

t 2 Sc
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Construction of the polynom P
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Equivalent representation using matrix
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Equivalent representation using matrix
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Equivalent representation using matrix
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Main ideas of the proof
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Bernoulli Model
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L1 reconstruction of a sparse image

Source : Justin Romberg & Michael Wakin 39



Geometry of Sparse Signal Sets

Linear

K-plane

Sparse, Nonlinear

Union of K-planes

Source : Justin Romberg & Michael Wakin 40



Geometry: Embedding in RM

K-planes

• )(K-plane) = K-plane in general
• M � 2K measurements

– necessary for injectivity
– sufficient for injectivity when ) Gaussian
– but not enough for efficient, robust recovery

• (PS - can distinguish most K-sparse x with as few as M=K+1)

Source : Justin Romberg & Michael Wakin 41



The Geometry of L1 Recovery

null space of 

translated to

measurements

signal

nonzero
entries

random orientation
dimension N-M

Source : Justin Romberg & Michael Wakin 42



L0 Recovery Works

null space of 

translated to

minimum L0 solution correct 
if

(w.p. 1 for Gaussian ))

Source : Justin Romberg & Michael Wakin 43



Why L2 Doesn’t Work 

least squares,
minimum L2 solution
is almost never sparse

Source : Justin Romberg & Michael Wakin

Why L1 Works

Criterion for success:
Ensure with high probability that 
a randomly oriented (N-M)-plane, 
anchored on a K-face of the L1
ball, will not intersect the ball.

Want K small, (N-M) small 
(i.e., M large)

random orientation
dimension N-M
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• Reconstruction/decoding: given
(ill-posed inverse problem) find

• L2 fast, wrong

• L0 correct, slow

• L1 correct, efficient
mild oversampling
[Candes, Romberg, Tao; Donoho]

CS Signal Recovery

linear program

Source : Justin Romberg & Michael Wakin 45



Restricted Isometry Property (aka UUP)
[Candès, Romberg, Tao]

• Measurement matrix ) has
RIP of order K if 

for all K-sparse signals x.

• Does not hold for K >M; may hold for smaller K.

• Implications: tractable, stable, robust recovery

Source : Justin Romberg & Michael Wakin 46



RIP as a “Stable” Embedding

• RIP of order 2K implies: for all K-sparse x1 and x2,

K-planes

(if G2K < 1 have injectivity; smaller G2K more stable)

Source : Justin Romberg & Michael Wakin 47



Implications of RIP
[Candès (+ et al.); see also Cohen et al., Vershynin et al.]

If G2K < 0.41, ensured:
1. Tractable recovery: All K-sparse x are perfectly 

recovered via l1minimization. 

2. Robust recovery: For any x� RN, 

3. Stable recovery: Measure y = )x + e, with 
||e||2 < H, and recover

Then for any x� RN, 

Source : Justin Romberg & Michael Wakin 48



Verifying RIP:
How Many Measurements?

• Want RIP of order 2K (say) to hold for MxN )
– difficult to verify for a given )
– requires checking eigenvalues of each submatrix

• Prove random ) will work 
– iid Gaussian entries
– iid Bernoulli entries (+/- 1)
– iid subgaussian entries
– random Fourier ensemble
– random subset of incoherent dictionary

• In each case, M = O(K log N) suffices
– with very high probability, usually 1-O(e-CN)
– slight variations on log term
– some proofs complicated, others simple (more soon)

Source : Justin Romberg & Michael Wakin 49



Optimality
[Candès; Donoho]

• Gaussian ) has RIP order 2K (say) with M = O(K log(N/M))

• Hence, for a given M, for x � wlp (i.e., |x|(k) ~ k-1/p), 0 < p < 1, 
(or x � l1)

• Up to a constant, these bounds are optimal: no other linear 
mapping to RM followed by any decoding method could yield 
lower reconstruction error over classes of compressible signals 

• Proof (geometric): Gelfand n-widths [Kashin; Gluskin, Garnaev]
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Applications : new sensing architectures

Source : Gabriel Peyré 51



Thank you for listening !
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