Emmanuel Candes Reading Group

Towards a Mathematical Theory of Super-Resolution
 E. Candes C. Fernandez-Granda [2012]

Philippe Weinzaepfel

12 June 2014

Super-resolution

Goal

Enhancing the resolution of a sensing system

Super-resolution

Goal

Enhancing the resolution of a sensing system
object of interest $x(t) \quad$ Observed signal $y(t)=(x \star h)(t)$

$\hat{x}(\omega)$ Fourier transform of $x(t)$

$$
\hat{y}(\omega)=\hat{x}(\omega) \hat{h}(\omega)
$$

Outline

(1) Continuous case
(2) Discrete case
(3) Discrete case with noisy data

4 Solver for Problem 1

Continuous case in 1D: notations

x Weighted superposition of spikes

$$
\begin{array}{cl}
x=\sum_{j} a_{j} \delta_{t_{j}} & t_{j} \in[0,1], a_{j} \in \mathbb{C} \\
y(k)=\sum_{j} a_{j} e^{-i 2 \pi k t_{j}} & k \in \mathbb{Z},|k| \leqslant f_{c} \\
y=F_{n} x & n=2 f_{c}+1 \tag{3}
\end{array}
$$

resolution cut-off $\lambda_{c}:=1 / f_{c}$

Continuous case in 1D: notations

x Weighted superposition of spikes

$$
\begin{array}{cl}
x=\sum_{j} a_{j} \delta_{t_{j}} & t_{j} \in[0,1], a_{j} \in \mathbb{C} \\
y(k)=\sum_{j} a_{j} e^{-i 2 \pi k t_{j}} & k \in \mathbb{Z},|k| \leqslant f_{c} \\
y=F_{n} x & n=2 f_{c}+1 \tag{3}
\end{array}
$$

resolution cut-off $\lambda_{c}:=1 / f_{c}$

Problem 1

$$
\begin{equation*}
\min _{\tilde{x}}\|\tilde{x}\|_{T V} \quad \text { subject to } F_{n} \tilde{x}=y \tag{4}
\end{equation*}
$$

Continuous case: theorem

Abstract

Theorem 1.2 If $\Delta(T) \geqslant 2 / f_{c}=2 \lambda_{c}$, then x is the unique solution of Problem 1 .

Continuous case: theorem

Theorem 1.2

If $\Delta(T) \geqslant 2 / f_{c}=2 \lambda_{c}$, then x is the unique solution of Problem 1.

Continuous case: theorem

Theorem 1.2

If $\Delta(T) \geqslant 2 / f_{c}=2 \lambda_{c}$, then x is the unique solution of Problem 1 .

Higher dimensions

Also holds with a constant c_{d} instead of 2. (2.38 in 2D)

Ideas of proof (1)

Sufficient condition: dual polynomials

$\forall v \in \mathbb{C}^{|T|},\left|v_{j}\right|=1$, there exists a low frequency trigonometric polynomial

$$
q(t)=\sum_{k=-f_{c}}^{f_{c}} c_{k} e^{i 2 \pi k t} \quad \text { s.t. } \quad \begin{cases}q\left(t_{j}\right)=v_{j}, & t_{j} \in T, \tag{5}\\ |q(t)|<1, & t \in[0,1) \backslash T\end{cases}
$$

Analog to the sufficient condition for discrete signal in compressed sensing

Ideas of proof (2)

Building q

$$
\begin{equation*}
q(t)=\sum_{t_{j} \in T} \alpha_{j} K\left(t-t_{j}\right)+\beta_{j} K^{\prime}\left(t-t_{j}\right) \tag{6}
\end{equation*}
$$

s.t.

$$
\forall t_{k} \in T, \quad\left\{\begin{array}{l}
q\left(t_{k}\right)=v_{k} \tag{7}\\
q^{\prime}\left(t_{k}\right)=0
\end{array}\right.
$$

Squared Fejer kernel

$$
\begin{equation*}
K(t)=\left[\frac{\sin \left(\left(\frac{f_{c}}{2}+1\right) \pi t\right)}{\left(\frac{f_{c}}{2}+1\right) \sin (\pi t)}\right]^{4} \tag{8}
\end{equation*}
$$

K and its derivatives decay rapidly around the origin

Generalization to splines

Spline of order / in C^{l-1}

$$
\begin{equation*}
x(t)=\sum_{t_{j} \in T} \mathbf{1}_{\left[t_{j-1}, t_{j}\right]} p_{j}(t) \quad \text { of period } 1 \tag{9}
\end{equation*}
$$

Generalization to splines

Spline of order / in C^{l-1}

$$
\begin{equation*}
x(t)=\sum_{t_{j} \in T} \mathbf{1}_{\left[t_{j-1}, t_{j}\right]} p_{j}(t) \quad \text { of period } 1 \tag{9}
\end{equation*}
$$

Recovery

$$
\begin{gather*}
x^{(I+1)}=\sum_{j}\left(p_{j+1}^{(I)}\left(t_{j}\right)-p_{j}^{(I)}\left(t_{j}\right)\right) \delta_{t_{j}} \tag{10}\\
y_{k}^{(I+1)}=(i 2 \pi k)^{I+1} y_{k}, \quad k \neq 0 \tag{11}\\
\text { periodicity } \Rightarrow y_{0}^{(j)}=\int_{0}^{1} x^{(j)}(t) d t=0, \quad 1 \leqslant j \leqslant l+1 \tag{12}
\end{gather*}
$$

Discrete case

$x \in \mathbb{C}^{N}$

$$
\begin{equation*}
y_{k}=\sum_{t=0}^{N-1} x_{t} e^{-i 2 \pi k t / N} \quad|k| \leqslant f_{c} \tag{13}
\end{equation*}
$$

Discrete case

$x \in \mathbb{C}^{N}$

$$
\begin{equation*}
y_{k}=\sum_{t=0}^{N-1} x_{t} e^{-i 2 \pi k t / N} \quad|k| \leqslant f_{c} \tag{13}
\end{equation*}
$$

Corollary 1.4

Let $T \subset\{0,1, \ldots, N-1\}$ be the support of $\left\{x_{t}\right\}_{t=0}^{N-1}$ with

$$
\begin{equation*}
\min _{t \neq t^{\prime} \in T}\left|t-t^{\prime}\right| / N \geqslant 2 \lambda_{c}=2 / f_{c} \tag{14}
\end{equation*}
$$

x is unique solution of

$$
\begin{equation*}
\min _{\tilde{x}}\|\tilde{x}\|_{1} \quad \text { subject to } F_{n} \tilde{x}=y \quad \text { (Problem 2) } \tag{15}
\end{equation*}
$$

Discrete case

$x \in \mathbb{C}^{N}$

$$
\begin{equation*}
y_{k}=\sum_{t=0}^{N-1} x_{t} e^{-i 2 \pi k t / N} \quad|k| \leqslant f_{c} \tag{13}
\end{equation*}
$$

Corollary 1.4

Let $T \subset\{0,1, \ldots, N-1\}$ be the support of $\left\{x_{t}\right\}_{t=0}^{N-1}$ with

$$
\begin{equation*}
\min _{t \neq t^{\prime} \in T}\left|t-t^{\prime}\right| / N \geqslant 2 \lambda_{c}=2 / f_{c} \tag{14}
\end{equation*}
$$

x is unique solution of

$$
\min _{\tilde{x}}\|\tilde{x}\|_{1} \quad \text { subject to } F_{n} \tilde{x}=y \quad \text { (Problem 2) }
$$

Super-Resolution Factor $S R F=N / n \approx N / 2 f_{c}$
If non zeros components of x are separated by at least $4 S R F$, perfect super-resolution occurs.

Discrete case with noisy data

Noisy data

$$
\begin{array}{cc}
y=F_{n} x+w & \left\|F_{n}^{*} w\right\|_{1} / N \leqslant \delta \\
y=F_{n}(x+z) & \|z\|_{1} \leqslant \delta, z=P_{n} z \\
s:=F_{n}^{*} y / N=P_{n} x+P_{n} z & \left\|P_{n} z\right\|_{1} \leqslant \delta \tag{18}
\end{array}
$$

Discrete case with noisy data

Noisy data

$$
\begin{array}{cc}
y=F_{n} x+w & \left\|F_{n}^{*} w\right\|_{1} / N \leqslant \delta \\
y=F_{n}(x+z) & \|z\|_{1} \leqslant \delta, z=P_{n} z \\
s:=F_{n}^{*} y / N=P_{n} x+P_{n} z & \left\|P_{n} z\right\|_{1} \leqslant \delta \tag{18}
\end{array}
$$

Problem 3: relaxed version of Problem 2

$$
\begin{equation*}
\min _{\tilde{x}}\|\tilde{x}\|_{1} \quad \text { subject to }\left\|P_{n} \tilde{x}-s\right\|_{1} \leqslant \delta \tag{19}
\end{equation*}
$$

Discrete case with noisy data

Noisy data

$$
\begin{array}{cc}
y=F_{n} x+w & \left\|F_{n}^{*} w\right\|_{1} / N \leqslant \delta \\
y=F_{n}(x+z) & \|z\|_{1} \leqslant \delta, z=P_{n} z \\
s:=F_{n}^{*} y / N=P_{n} x+P_{n} z & \left\|P_{n} z\right\|_{1} \leqslant \delta \tag{18}
\end{array}
$$

Problem 3: relaxed version of Problem 2

$$
\begin{equation*}
\min _{\tilde{x}}\|\tilde{x}\|_{1} \quad \text { subject to }\left\|P_{n} \tilde{x}-s\right\|_{1} \leqslant \delta \tag{19}
\end{equation*}
$$

Theorem 1.5

Solution of Problem 3, under separation condition, obeys

$$
\begin{equation*}
\|\tilde{x}-x\|_{1} \leqslant C_{0} S R F^{2} \delta \tag{20}
\end{equation*}
$$

Ideas of proof

Decompose the error into low and high frequency:
Low frequency

$$
\begin{equation*}
\left\|h_{L}\right\|_{1}=\left\|P_{n}(\hat{x}-x)\right\|_{1} \leqslant\left\|P_{n} \hat{x}-s\right\|_{1}+\left\|s-P_{n} x\right\|_{1} \leqslant 2 \delta \tag{21}
\end{equation*}
$$

High frequency

- \tilde{x} as minimum 11 -norm
- $F_{n} h=0 \Rightarrow\left\|P_{T} h\right\|_{1} \leqslant\left(1-\alpha / S R F^{2}\right)\left\|P_{T^{c}} h\right\|_{1}$

Solver for Problem 1

Problem 1

$$
\begin{equation*}
\min _{\tilde{x}}\|\tilde{x}\|_{T V} \tag{22}
\end{equation*}
$$

subject to $F_{n} \tilde{x}=y$

Solver for Problem 1

Problem 1

$$
\begin{equation*}
\min _{\tilde{x}}\|\tilde{x}\|_{T V} \tag{22}
\end{equation*}
$$

subject to $F_{n} \tilde{x}=y$

Problem 1 (dual)

$$
\begin{equation*}
\max \operatorname{Re}<y, c> \tag{23}
\end{equation*}
$$

subject to $\left\|F_{n}^{*} c\right\|_{\infty} \leqslant 1$

Solver for Problem 1

Problem 1

$m_{\bar{x}}$

$$
\max _{c} \operatorname{Re}<y, c>
$$

subject to $\left\|F_{n}^{*} c\right\|_{\infty} \leqslant 1$
Problem 1 (dual)

$$
\begin{equation*}
\text { subject to } F_{n} \tilde{x}=y \tag{22}
\end{equation*}
$$

Corollary 4.1

$$
\left\|F_{n}^{*} c\right\|_{\infty} \leqslant 1 \Leftrightarrow \exists Q \in \mathbb{C}^{n \times n},\left(\begin{array}{cc}
Q & c \tag{24}\\
c * & 1
\end{array}\right) \succcurlyeq 0, \sum_{i=1}^{n-j}=\left\{\begin{array}{l}
1, j=0 \\
0, j \neq 0
\end{array}\right.
$$

Solver for Problem 1

Problem 1

$$
\begin{equation*}
\min _{\tilde{x}}\|\tilde{x}\| T V \quad \text { subject to } F_{n} \tilde{x}=y \tag{22}
\end{equation*}
$$

Problem 1 (dual)

$$
\begin{equation*}
\max \operatorname{Re}<y, c> \tag{23}
\end{equation*}
$$

subject to $\left\|F_{n}^{*} c\right\|_{\infty} \leqslant 1$

Corollary 4.1

$$
\left\|F_{n}^{*} c\right\|_{\infty} \leqslant 1 \Leftrightarrow \exists Q \in \mathbb{C}^{n \times n},\left(\begin{array}{cc}
Q & c \tag{24}\\
c * & 1
\end{array}\right) \succcurlyeq 0, \sum_{i=1}^{n-j}=\left\{\begin{array}{l}
1, j=0 \\
0, j \neq 0
\end{array}\right.
$$

Equivalent of the dual of problem 1

$$
\max _{c, Q} \operatorname{Re}<y, c>\quad \text { subject to (24) }
$$

Conclusion

- Under minimum separation condition, super-resolution occurs.
- With noise, signal can be recovered with error proportional to noise, and to the square of the super-resolution factor

Thanks for your attention

