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Sparse recovery : Basics I

The problem under study
Recover original signal x

0

œ Rn from measurements y œ Rm where :

y = „x
0

„ being an m ◊ n matrix with m < n

This problem has, of course, infinitely many solutions.
Under additional sparsity assumption on x

0

one has to solve the
optimization problem :

The crude problem :

arg min
x

||x ||
0

subject to y = „x

where ||x ||
0

= |{i : x
i

”= 0}|
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Sparse recovery : Basics II

This problem is known to be NP-hard. Hence the relaxed convex
optimization problem :

The reasonnable problem :

arg min
x

||x ||
1

subject to y = „x (P)

This problem is e�ciently solved using Basis Pursuit ([Chen et al., 1998])
or LASSO ([Tibshirani, 1994]).
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Two intuitive reasons why the ¸1-norm is sparsity-inducing

Clear ! !

Consider :

xı(y) = arg min
x

1
2Îy ≠ xÎ2 + ⁄ÎxÎ

1

(Map y ‘æ xı(y) is the proximal operator).
Solution is as indicated.
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Not 100% reliable !

Consider the simple problem (P) with :

x
0

= (0, 1, 0)

„ =

3
2 1 1
1 1 2

4

Easy to see that the solution is ( 1

3

, 0, 1

3

) which is not the sparsest one.
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Make ¸1-norm more democratic... I

Non-zero entries are considered equivalently in ¸
0

-norm.
With ¸

1

-norm, large coe�cients penalize more the objective than
smaller ones.
Prevents null entries from arising in the solution
... and small non-zero entries that are not in the solution from
vanishing.

Hence the idea to push forward the optimization program by solving a
reweighted problem as follows :

Reweighted ¸
1

minimization problem

arg min
x

ÿ
Ê

i

|x
i

| subject to y = „x (WP
1

)

where Ê
i

=

;
1

|x
i

| x
i

”= 0
Œ x

i

= 0
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Make ¸1-norm more democratic... II

Geometrically, this is equivalent to rescaling the vector space and the
¸

1

-balls :
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The iterative reweighted algorithm

1 Set W = IdRn

2 Solve the weighted ¸
1

minimization problem :

x (l) = arg min
x

||W (l)x ||¸
1

subject to y = „x (WP
1

)

3 Update weights :
w (l+1)

i

=
1

|x (l)
i

| + ‘

4 Terminate if l
max

iterations or on convergence.
Otherwise, go to step 2.

Emmanuel Candès - Mickael Wakin - Stephen Boyd Enhancing sparsity by reweighted ¸
1

minimization



Context

Reweighting ¸
1

-norm

The algorithm and its justification

Numerical experiments

Expected benefits I

At first glance, we have multiplied computation load by a factor l
max

! ! !

Enhancing sparsity should be understood as :

the reduction of the oversampling ratio m/k that allows for exact

recovery.
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Demo
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An MM algorithm I

Principle of Majorize-Minimize algorithm : iteratively minimize a function
that majorizes the objective. Consider the log-sum penalty problem :

arg min
x

nÿ

i=0

log(|x
i

| + ‘) subject to y = „x

It is equivalent to :

arg min
x ,u

nÿ

i=0

log(u
i

+ ‘) subject to
;

y = „x
|x

i

| Æ u
i

, ’i = 1, ..., n

which in turn is of the general form :

arg min
v

g(v) subject to v œ C

where g is concave and di�erentiable.
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An MM algorithm II

g being di�erentiable, it can be locally approximated by its tangent. And
since it is concave, the tangent lies above the graph of g . We have the
majorizing function. Hence the iterative algorithm :

v (l+1) = arg min
v

nÿ

i=1

g(v (l)) + Òg(v (l)) · (v ≠ v (l)) subject to v œ C

Omitting the constant term in this expression, one now has to solve :

(x (l+1), u(l+1)) = arg min
v

nÿ

i=1

u
i

u(l)
i

+ ‘
subject to

;
y = „x
|x

i

| Æ u
i

This is again equivalent to :

x (l+1) = arg min
x

nÿ

i=1

|x
i

|
|x (l)

i

| + ‘
subject to y = „x

which is the reweighted ¸
1

minimization algo ! ! !
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Summary

arg min

x

q
n

i=0

log(|x
i

| + ‘)

s. t. y = „x

x

(l+1) = arg min

x

q
n

i=0

|x
i

|
|x (l)

i

| + ‘
s. t. y = „x

arg min

u,x

q
n

i=0

log(u
i

+ ‘)

s. t.

y = „x

|x
i

| Æ u

i

(u(l+1), x

(l+1)) = arg min

u,x

q
n

i=0

u

i

u

(l)
i

+ ‘

s. t.

y = „x

|x
i

| Æ u

i

MM
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Why log-sum penalty ?

Just because it approximates much better the ¸
0

-norm and thus is much
more sparsity-inducing than the ¸

1

-norm.
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Parallel with Least Squares

Least Square minimizes the ¸
2

-norm of the residual Ax ≠ b.
Outliers sensitive.
Solve reweighted to better approximate an ¸

1

criterion.

Emmanuel Candès - Mickael Wakin - Stephen Boyd Enhancing sparsity by reweighted ¸
1

minimization



Context

Reweighting ¸
1

-norm

The algorithm and its justification

Numerical experiments

Num Exp. 1 : sparse recovery

A : iid gaussian entries.
n = 256 ; m = 100
Probability of perfect recovery, over 500 trials !
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The choice of ‘

A rough approximation for choosing ‘ : 10% of std deviation of
non-zero coe�cients.
A modified algorithm with adaptative choice of ‘.

Add to step 3 of the algo :
Reorder in decreasing order of magnitude coe�cients of x (l). Set :

‘ = max(|x (l)|
i

0

, 10≠3)

where i
0

=
m

4 log( n

m

)
.
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Num Exp. 3 : Denoising

Observed data : y = „x
0

+ z .
Solve :

x (l) = arg min
x

ÎW (l)xÎ¸
1

subject to Îy ≠ „xÎ¸
2

Æ ”

Results :
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Num Exp. 4 : Statistical estimation

qsdfsd
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Num Exp. 5 : Error correction [Candes and Tao, 2005]

Let x
0

œ Rn be a signal to be transmitted. It is not sparse.
Encode the message with matrix „ œ Rm◊n, m Ø n.
Due to tranmission errors, receive y = „x

0

+ e where e is the
corruption vector, which is sparse.
Apply reweighted ¸

1

minimization to :
arg min

x

Îy ≠ „xÎ¸
1

Set the ‘ parameter to — ◊ sd. of corruptedy

Conclusion :
Reweighted ¸

1

allows a larger
corrupted entries proportion to be
overcome (from 28% to 35%
approx.)
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Num Exp. 6 : Sparse image gradient reconstruction via TV

minimization

Let x
0

œ Rn be an image whose gradient is sparse (n = 256 ◊ 256,
and gradient has 2184 non-zero entries).
Sample the Fourier transform of x

0

along 10 radial lines in the
Fourier space (m = 2521 real-valued measurments) and observe
y = „x

0

where „ is a subset of the Fourier coe�cients.
Set ‘ to 0.1 and apply reweighted ¸

1

minimization to :
arg min

x

ÎxÎ
TV

subject to y = „x

It would require 4257 measurements to achieve a perfect recovery with
unweighted minimization. Oversampling ratio reduction from 1.95 ( 4257

2184

)
to 1.15 ( 2521

2184

).
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Num Exp. 7 : Where compressive sensing comes up ! I

The signal x
0

may not be sparse but in a overcomplete dictionnary Â ie :
x

0

= Â– where – is sparse.
Two ways of adressing the reconstruction problem :

1 The synthesis-based recovery, which solves :

arg min
–

Î–Î¸
1

subject to y = „Â–

2 The analysis-based recovery, which solves :

arg min
x

ÎÂúxÎ¸
1

subject to y = „x

Both can be applied reweighting.
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Num Exp. 7 : Where compressive sensing comes up ! II

Let x
0

œ Rn with n = 512 be the superposition of 2 radar modulated
pulses.
Collect 30 measurements form an iid ±1 random matrix
(undersampling factor Ø 17 ! !).
Reconstruct signal with a time-freq Gabor dictionnary (43◊
overcomplete) not containing the 2 pulses.
Results :
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Num Exp. 7 : Where compressive sensing comes up ! III
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