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Context

Sparse recovery : Basics |

The problem under study

Recover original signal xp € R” from measurements y € R™ where :
Yy =¢xo

¢ being an m X n matrix with m < n

This problem has, of course, infinitely many solutions.
Under additional sparsity assumption on xp one has to solve the
optimization problem :

The crude problem :

argmin ||x||lo subject to y = ¢x
X

where ||x]|o = |{i : x; # 0}|
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Context

Sparse recovery : Basics |l

This problem is known to be NP-hard. Hence the relaxed convex
optimization problem :

The reasonnable problem :

argmin ||x||1 subject to y = ¢x (P)

This problem is efficiently solved using Basis Pursuit ([Chen et al., 1998])
or LASSO ([Tibshirani, 1994]).

Emmanuel Candeés - Mickael Wakin - Stephen Boyd Enhancing sparsity by reweighted £1 minimization



Context

Reweighting £1-norm
The algorithm and its justification
merical experimen

Two intuitive reasons why the ¢1-norm is sparsity-inducing

>N HN Clear!!
@@

shrigse Consider :

1
B x*(y) =argmin - Zly = x||* + Allx[lx
X

A . X

Threshold

(Map y — x*(y) is the proximal operator).
Solution is as indicated.
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Not 100% reliable!

Consider the simple problem (P) with :

X0 = (0, 1,0)
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Reweighting £1-norm

Make ¢;-norm more democratic... |

@ Non-zero entries are considered equivalently in £yp-norm.
o With ¢1-norm, large coefficients penalize more the objective than
smaller ones.
@ Prevents null entries from arising in the solution
@ ... and small non-zero entries that are not in the solution from
vanishing.
Hence the idea to push forward the optimization program by solving a
reweighted problem as follows :

Reweighted ¢; minimization problem

arg min Zw,-|x,-| subject to y = ¢x (WPy)
1 ;
where w; = { g Xi 70
oo xi=0
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Make ¢1-norm more democratic... |l

Geometrically, this is equivalent to rescaling the vector space and the
{1-balls :

X0
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The algorithm and its justification

The iterative reweighted algorithm

Q@ Set W = ldg»

@ Solve the weighted ¢; minimization problem :

x =argmin  [|[Wx]|,, subject to y = ¢x (Wpy)

© Update weights :
WD 1

X

1

© Terminate if |, iterations or on convergence.
Otherwise, go to step 2.
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The algorithm and its justification

Expected benefits |

At first glance, we have multiplied computation load by a factor /ya, !'!!

Enhancing sparsity should be understood as :

the reduction of the oversampling ratio m/k that allows for exact
recovery.
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The algorithm and its justification

An MM algorithm |

Principle of Majorize-Minimize algorithm : iteratively minimize a function
that majorizes the objective. Consider the log-sum penalty problem :

n
arg min Z log(|xi| + €) subject to y = ¢x
x i=0

It is equivalent to :

n
. _ . y = ¢x
argx,rlrlnn 'EO log(uj + €) subject to { | < un¥i=1,...n
=

which in turn is of the general form :

argmin g(v) subjectto veC

where g is concave and differentiable.
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The algorithm and its justification

An MM algorithm I

g being differentiable, it can be locally approximated by its tangent. And
since it is concave, the tangent lies above the graph of g. We have the
majorizing function. Hence the iterative algorithm :

n
vt = argmin Y g(v0) + Vg(vD) - (v — v1) subjectto  veC
v i=1
Omitting the constant term in this expression, one now has to solve :
(X(/+1)7 u(/+1)) = argmin Z ———  subject to { o
v

= u +e xil < ui

This is again equivalent to :
n
x;
xU*) = arg min Z (/‘)7'| subject to  y = ¢x
x i—1 x| +e

which is the reweighted ¢; minimization algo!!!
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The algorithm and its justification

Summary

. X
argxmm 27:0 log(|xi| + €) xU+1) = arg min Zf:o ﬁ
X X €
st y=¢x s.t. y=¢x '
I
~
. . uj
arguTm Z?:o log(u;i + €) (u(+D) x(+1)) = arg min 27:0 Tl—i-e
5 u,x A
_ > i
ot Y=ox MM O
|Xi| < uj o |X,‘| < uj
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Why log-sum penalty ?

Just because it approximates much better the ¢o-norm and thus is much
more sparsity-inducing than the ¢;-norm.

1.5 A ; 0
1 O flog,a(t)

=
< fo(t)
©
Q
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Parallel with Least Squares

@ Least Square minimizes the £»-norm of the residual Ax — b.
@ Outliers sensitive.

@ Solve reweighted to better approximate an ¢y criterion.
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Num Exp. 1 : sparse recovery

A 1 iid gaussian entries.
n=256; m=100
Probability of perfect recovery, over 500 trials !

4 Reweighting Iterations Reweighting, € = 0.1
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Numerical experiments

The choice of €

@ A rough approximation for choosing € : 10% of std deviation of
non-zero coefficients.

@ A modified algorithm with adaptative choice of e.

Add to step 3 of the algo :

Reorder in decreasing order of magnitude coefficients of x(). Set :

e = max(|x("];,1073%)

m

where ip = ———.
4log(+)
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Numerical experiments

Num Exp. 3 : Denoising

@ Observed data : y = ¢xp + z.
@ Solve :

xD =argmin  |[Wx|l,,  subject to

@ Results :

Gaussian coeffs, k = 38 Bernoulli coeffs, k = 38

ly = ¢xlle, <0

Compressible signal, p=0.7

Emmanuel Candeés - Mickael Wakin - Stephen Boyd Enhancing sparsity by reweighted £1 minimization



Context
Reweighting £71-norm
The algorithm and its justification
I

Numerical experiments

qsdfsd

Emmanuel Candés - Mickael Wakin - Stephen Boyd

«40> «Fr» «» « > Q>



Numerical experiments

Num Exp. 5 : Error correction [Candes and Tao, 2005]

@ Let xg € R" be a signal to be transmitted. It is not sparse.

o Encode the message with matrix ¢ € R™*" m > n.

@ Due to tranmission errors, receive y = ¢xp + e where e is the
corruption vector, which is sparse.

@ Apply reweighted ¢; minimization to :

argmin |y — éx|le,
X

@ Set the € parameter to S x sd. of corruptedy

1 AR
e % |==Unwt. L1
Y|-+-B=0.01
0.8 —Bo 01
Zos S
o U . wnuf} = .
8 , rB=10 Reweighted ¢; allows a larger
3 P . .
04 corrupted entries proportion to be
oz overcome (from 28% to 35%
. approx.)
0(?25 0.3 0.35 0.4 0.45

Error probonion k/m
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Numerical experiments

Num Exp. 6 : Sparse image gradient reconstruction via TV

minimization

@ Let xp € R" be an image whose gradient is sparse (n = 256 x 256,
and gradient has 2184 non-zero entries).

@ Sample the Fourier transform of xg along 10 radial lines in the
Fourier space (m = 2521 real-valued measurments) and observe
¥ = ¢xo where ¢ is a subset of the Fourier coefficients.

@ Set € to 0.1 and apply reweighted ¢; minimization to :

argmin ||x||7v  subjectto y = ¢x
X

It Would reqmre 4257 measurements to achieve a perfect recovery with
. —— 1 nr 4257\

- la X B .
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Numerical experiments

Num Exp. 7 : Where compressive sensing comes up ! |

The signal xg may not be sparse but in a overcomplete dictionnary v ie :
Xp = 1o where « is sparse.
Two ways of adressing the reconstruction problem :

@ The synthesis-based recovery, which solves :

argmin |lallg, subject to y = ¢
«

@ The analysis-based recovery, which solves :

argmin |[¢*x|le, subjectto y = ¢éx
X

Both can be applied reweighting.
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Numerical experiments

Num Exp. 7 : Where compressive sensing comes up ! |l

@ Let xg € R"” with n = 512 be the superposition of 2 radar modulated
pulses.

@ Collect 30 measurements form an iid £1 random matrix
(undersampling factor > 1711).

@ Reconstruct signal with a time-freq Gabor dictionnary (43x
overcomplete) not containing the 2 pulses.

@ Results :
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Num Exp. 7 : Where compressive sensing comes up ! |l
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