TEXTURE MODELING
BY GAUSSIAN FIELDS WITH
PRESCRIBED LOCAL ORIENTATION

Kévin Polisano / kevin.polisano@imag.fr

joint work with

Marianne Clausel
Valérie Perrier
Laurent Condat
Outline

- Introduction
 - Motivation
 - General probabilistic framework
- Our new stochastic model
 - Definition: Locally Anisotropic Fractional Brownian Field
 - Notion of tangent field
- Synthesis methods
 - Tangent field simulation by a turning bands method
 - LAFBF simulation via tangent field formulation
- Numerical experiments
- Conclusion and future work
How to synthesize natural random textures?

Mathematical model?
How to synthesize natural random textures?

Mathematical model?
How to synthesize natural random textures?

Randomness
Self-similarity

Mathematical model?
How to synthesize natural random textures?

Randomness
Self-similarity

Mathematical model?
How to synthesize natural random textures?

Randomness
Self-similarity

Mathematical model?
How to synthesize natural random textures?

Randomness
Self-similarity

Mathematical model?

Roughness and regularity
How to synthesize natural random textures?

Mathematical model?

Randomness
Self-similarity

Roughness and regularity

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation
How to synthesize natural random textures?

- Randomness
- Self-similarity
- Roughness and regularity
- Mathematical model?
How to synthesize natural random textures?

Mathematical model?

Randomness
Self-similarity

Orientation and anisotropy

Roughness and regularity

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation
The basic component:

Fractional Brownian Field (FBF)

- B^H FBF with Hurst index $0 < H < 1$ [Mandelbrot, Van Ness, 1968]
- stationary increments: $B^H(\cdot + z) - B^H(z) \overset{\mathcal{L}}{=} B^H(\cdot) - B^H(0)$
- self-similar: $B^H(\lambda \cdot) \overset{\mathcal{L}}{=} \lambda^H B^H(\cdot)$
- isotropic: $B^H \circ R_\theta \overset{\mathcal{L}}{=} B^H$

The covariance is given by

$$\text{Cov}(B^H(x), B^H(y)) = c_H(\|x\|^{2H} + \|y\|^{2H} - \|x - y\|^{2H})$$
The basic component:
Fractional Brownian Field (FBF)

Harmonizable representation

\[
B^H(x) = \int_{\mathbb{R}^2} \frac{e^{ix \cdot \xi} - 1}{\| \xi \|^{H+1}} d\hat{\mathcal{W}}(\xi)
\]

[Samorodnitsky, Taqqu, 1997]
The basic component: Fractional Brownian Field (FBF)

Harmonizable representation

\[B^H(x) = \int_{\mathbb{R}^2} \frac{e^{i x \cdot \xi} - 1}{\|\xi\|^{H+1}} \, d\mathcal{W}(\xi) \]

[Samorodnitsky, Taqqu, 1997]
The basic component: Fractional Brownian Field (FBF)

Harmonizable representation

\[B^H(x) = \int_{\mathbb{R}^2} \frac{e^{ix \cdot \xi} - 1}{\|\xi\|_H^{H+1}} d\widehat{W}(\xi) \]

roughness indicator

complex Brownian measure

[Samorodnitsky, Taqqu, 1997]
The basic component:

Fractional Brownian Field (FBF)

Harmonizable representation

\[B^H(x) = \int_{\mathbb{R}^2} \frac{e^{ix \cdot \xi} - 1}{\|\xi\|^{H+1}} d\hat{W}(\xi) \]

roughness indicator
complex Brownian measure

H=0.2

[Samorodnitsky, Taqqu, 1997]
The basic component:
Fractional Brownian Field (FBF)

- Harmonizable representation

\[B^H(x) = \int_{\mathbb{R}^2} \frac{e^{ix \cdot \xi} - 1}{\|\xi\|^{H+1}} \, d\widehat{W}(\xi) \]

- Roughness indicator
- Complex Brownian measure

[Samorodnitsky, Taqqu, 1997]
General model:

anisotropic self-similar Gaussian fields

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\widehat{W}(\xi) \]
General model:

anisotropic self-similar Gaussian fields

\[
X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi)
\]

\[
f^{1/2}(x, \xi) = c(x, \xi) ||\xi||^{-h(x, \xi)} - 1
\]
General model:

anisotropic self-similar Gaussian fields

\[
X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\tilde{W}(\xi)
\]

\[
f^{1/2}(x, \xi) = c(x, \xi) \|\xi\|^{-h(x, \xi) - 1}
\]

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \) \(\Rightarrow X = B^H \)

[Mandelbrot, Van Ness, 1968]
General model:

anisotropic self-similar Gaussian fields

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi)d\tilde{W}(\xi) \]

\[f^{1/2}(x, \xi) = c(x, \xi)\|\xi\|^{-h(x, \xi)-1} \]

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \) \(\Rightarrow X = B^H \) [Mandelbrot, Van Ness, 1968]
- \(c(x, \xi) \equiv c(\text{arg} \, \xi) \) and \(h(x, \xi) \equiv h(\text{arg} \, \xi) \) \(\Rightarrow X = AFBF \) [Bonami, Estrade, 2003]

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation
General model :

anisotropic self-similar Gaussian fields

\[
X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\tilde{W}(\xi)
\]

\[
f^{1/2}(x, \xi) = c(x, \xi) \| \xi \|^{-h(x, \xi) - 1}
\]

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \) \(\Rightarrow X = B^H \)
- \(c(x, \xi) \equiv c(\arg \xi) \) and \(h(x, \xi) \equiv h(\arg \xi) \) \(\Rightarrow X = AFBF \) [Bonami, Estrade, 2003]
- **Example : elementary fields** \(c(\arg \xi) = 1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0) \)

 [Bierme, Richard, Moisan, 2012]
General model:

anisotropic self-similar Gaussian fields

\[X(x) = \int \mathbb{R}^2 \left(e^{ix \cdot \xi} - 1 \right) f^{1/2}(x, \xi) d\tilde{W}(\xi) \]

\[f^{1/2}(x, \xi) = c(x, \xi) \| \xi \|^{-h(x, \xi)-1} \]

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \Rightarrow X = B^H \)
- \(c(x, \xi) \equiv c(\text{arg} \, \xi) \) and \(h(x, \xi) \equiv h(\text{arg} \, \xi) \Rightarrow X = AFBF \) [Bonami, Estrade, 2003]

Example: elementary fields \(c(\text{arg} \, \xi) = 1_{[-\alpha, \alpha]}(\text{arg} \, \xi - \alpha_0) \) [Bierme, Richard, Moisan, 2012]
General model:

anisotropic self-similar Gaussian fields

\[
X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1)f^{1/2}(x, \xi)d\widehat{W}(\xi)
\]

\[
f^{1/2}(x, \xi) = c(x, \xi)\|\xi\|^{-h(x, \xi)}
\]

- \(c(x, \xi) \equiv 1\) and \(h(x, \xi) \equiv H \Rightarrow X = B^H\)
- \(c(x, \xi) \equiv c(\arg \xi)\) and \(h(x, \xi) \equiv h(\arg \xi) \Rightarrow X = AFB\) \([\text{Bonami, Estrade, 2003}]\)

Example: *elementary fields* \(c(\arg \xi) = \mathbb{1}_{[-\alpha, \alpha]}(\arg \xi - \alpha_0)\)
\([\text{Bierme, Richard, Moisan, 2012}]\)
General model: anisotropic self-similar Gaussian fields

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi) \]

- \(f^{1/2}(x, \xi) = c(x, \xi)\|\xi\|^{-h(x, \xi)-1} \)

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \Rightarrow X = B^H \)
- \(c(x, \xi) \equiv c(\text{arg } \xi) \) and \(h(x, \xi) \equiv h(\text{arg } \xi) \Rightarrow X = AFBF \)
- Example: elementary fields \(c(\text{arg } \xi) = 1_{[-\alpha, \alpha]}(\text{arg } \xi - \alpha_0) \)
- \(c(x, \xi) \equiv c(x, \text{arg } \xi) \) and \(h(x, \xi) \equiv h(x) \)

\[X(x) = \int_{\mathbb{R}^2} f^{1/2}(x, \xi) d\hat{W}(\xi) \]

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi) \]

\[f^{1/2}(x, \xi) = c(x, \xi)\|\xi\|^{-h(x, \xi)-1} \]

\[c(x, \xi) \equiv 1 \] and \(h(x, \xi) \equiv H \Rightarrow X = B^H \)

\[c(x, \xi) \equiv c(\text{arg } \xi) \] and \(h(x, \xi) \equiv h(\text{arg } \xi) \Rightarrow X = AFBF \)

\[c(x, \xi) \equiv c(x, \text{arg } \xi) \] and \(h(x, \xi) \equiv h(x) \)

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi) \]

\[f^{1/2}(x, \xi) = c(x, \xi)\|\xi\|^{-h(x, \xi)-1} \]

[Polisano, Clausel, Perrier, Condat, 2014]
[Polisano, Clausel, Perrier, Condat, 2014]
[Bierme, Richard, Moisan, 2012]
[Mandelbrot, Van Ness, 1968]
[Bonami, Estrade, 2003]
General model:

\[X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i \mathbf{x} \cdot \xi} - 1) f^{1/2}(\mathbf{x}, \xi) \, d\hat{W}(\xi) \]

\[f^{1/2}(\mathbf{x}, \xi) = c(\mathbf{x}, \xi)\|\xi\|^{-h(\mathbf{x}, \xi) - 1} \]

- \(c(\mathbf{x}, \xi) \equiv 1 \) and \(h(\mathbf{x}, \xi) \equiv H \) \(\Rightarrow X = B^H \)
- \(c(\mathbf{x}, \xi) \equiv c(\text{arg } \xi) \) and \(h(\mathbf{x}, \xi) \equiv h(\text{arg } \xi) \) \(\Rightarrow X = AFBF \) \[\text{[Bonami,Estrade,2003]} \]

- Example: elementary fields \(c(\text{arg } \xi) = 1_{[-\alpha, \alpha]}(\text{arg } \xi - \alpha_0) \)
 \[\text{[Bierme,Richard,Moisan,2012]} \]
- \(c(\mathbf{x}, \xi) \equiv c(\mathbf{x}, \text{arg } \xi) \) and \(h(\mathbf{x}, \xi) \equiv h(\mathbf{x}) \)
 \[\text{[Polisano,Clausel,Perrier,Condat,2014]} \]
General model:
anisotropic self-similar Gaussian fields

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi) \]

- \(f^{1/2}(x, \xi) = c(x, \xi) ||\xi||^{-h(x,\xi)}^{-1} \)

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \Rightarrow X = B^H \)
- \(c(x, \xi) \equiv c(\text{arg} \, \xi) \) and \(h(x, \xi) \equiv h(\text{arg} \, \xi) \Rightarrow X = AFBF \) [Bonami,Estrade,2003]
- Example: elementary fields \(c(\text{arg} \, \xi) = 1_{[-\alpha,\alpha]}(\text{arg} \, \xi - \alpha_0) \) [Bierme,Richard,Moisan,2012]
- \(c(x, \xi) \equiv c(x, \text{arg} \, \xi) \) and \(h(x, \xi) \equiv h(x) \) [Polisano,Clausel,Perrier,Condat,2014]
General model:

anisotropic self-similar Gaussian fields

\[
X(x) = \int_{\mathbb{R}^2} (e^{i x \cdot \xi} - 1) f^{1/2}(x, \xi) d\tilde{W}(\xi)
\]

\[
f^{1/2}(x, \xi) = c(x, \xi) \| \xi \|^{-h(x, \xi) - 1}
\]

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \Rightarrow X = B^H \)
- \(c(x, \xi) \equiv c(\arg \xi) \) and \(h(x, \xi) \equiv h(\arg \xi) \Rightarrow X = AFBF \)

Example: elementary fields \(c(\arg \xi) = 1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0) \)

- \(c(x, \xi) \equiv c(x, \arg \xi) \) and \(h(x, \xi) \equiv h(x) \)

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation
General model:

anisotropic self-similar Gaussian fields

\[X(x) = \int_{\mathbb{R}^2} (e^{i x \cdot \xi} - 1) f^{1/2}(x, \xi) d\widehat{W}(\xi) \]

\[f^{1/2}(x, \xi) = c(x, \xi) \| \xi \|^{-h(x, \xi) - 1} \]

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \Rightarrow X = B^H \)
- \(c(x, \xi) \equiv c(\arg \xi) \) and \(h(x, \xi) \equiv h(\arg \xi) \Rightarrow X = AFBF \)
- Example: elementary fields \(c(\arg \xi) = 1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0) \)
- \(c(x, \xi) \equiv c(x, \arg \xi) \) and \(h(x, \xi) \equiv h(x) \)

Global Anisotropy

Local orientation

Local roughness

[Mandelbrot, Van Ness, 1968]
[Bonami, Estrade, 2003]
[Bierme, Richard, Moisan, 2012]
[Polisano, Clausel, Perrier, Condat, 2014]
General model:

anisotropic self-similar Gaussian fields

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi) \]

\[f^{1/2}(x, \xi) = c(x, \xi) \|\xi\|^{-h(x, \xi)-1} \]

- \(c(x, \xi) \equiv 1 \) and \(h(x, \xi) \equiv H \Rightarrow X = B^H \)
- \(c(x, \xi) \equiv c(\text{arg } \xi) \) and \(h(x, \xi) \equiv h(\text{arg } \xi) \Rightarrow X = \text{AFBF} \) [Bonami,Estrade,2003]

- Example: elementary fields \(c(\text{arg } \xi) = 1_{[-\alpha,\alpha]}(\text{arg } \xi - \alpha_0) \) [Bierme,Richard,Moisan,2012]
- \(c(x, \xi) \equiv c(x, \text{arg } \xi) \) and \(h(x, \xi) \equiv h(x) \) [Polisano,Clausel,Perrier,Condat,2014]
General model: anisotropic self-similar Gaussian fields

\[X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi) \]

- \[f^{1/2}(x, \xi) = c(x, \xi)\|\xi\|^{-h(x, \xi) - 1} \]

- \[c(x, \xi) \equiv 1 \text{ and } h(x, \xi) \equiv H \Rightarrow X = B^H \] \[\text{[Mandelbrot, Van Ness, 1968]} \]
- \[c(x, \xi) \equiv c(\arg \xi) \text{ and } h(x, \xi) \equiv h(\arg \xi) \Rightarrow X = AFBF \] \[\text{[Bonami, Estrade, 2003]} \]
- Example: \textit{elementary fields} \[c(\arg \xi) = 1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0) \] \[\text{[Bierme, Richard, Moisan, 2012]} \]
- \[c(x, \xi) \equiv c(x, \arg \xi) \text{ and } h(x, \xi) \equiv h(x) \] \[\text{[Polisano, Clausel, Perrier, Condat, 2014]} \]

Local roughness
General model:

anisotropic self-similar Gaussian fields

\[
X(x) = \int_{\mathbb{R}^2} (e^{i x \cdot \xi} - 1) f^{1/2}(x, \xi) d\tilde{W}(\xi)
\]

\[
f^{1/2}(x, \xi) = c(x, \xi) ||\xi||^{-h(x, \xi)-1}
\]

- \(c(x, \xi) \equiv 1\) and \(h(x, \xi) \equiv H\) \(\Rightarrow X = B^H\)
- \(c(x, \xi) \equiv c(\text{arg } \xi)\) and \(h(x, \xi) \equiv h(\text{arg } \xi)\) \(\Rightarrow X = AFBF\)

- Example: \textit{elementary fields} \(c(\text{arg } \xi) = 1_{[-\alpha,\alpha]}(\text{arg } \xi - \alpha_0)\)

- \(c(x, \xi) \equiv c(x, \text{arg } \xi)\) and \(h(x, \xi) \equiv h(x)\)

General model:

anisotropic self-similar Gaussian fields

\[
X(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) f^{1/2}(x, \xi) d\hat{W}(\xi)
\]

\[
f^{1/2}(x, \xi) = c(x, \xi) \|\xi\|^{-h(x, \xi)-1}
\]

- \(c(x, \xi) \equiv 1\) and \(h(x, \xi) \equiv H \Rightarrow X = B^H\)
- \(c(x, \xi) \equiv c(\text{arg} \, \xi)\) and \(h(x, \xi) \equiv h(\text{arg} \, \xi) \Rightarrow X = AFBF\)
- Example: \textit{elementary fields} \(c(\text{arg} \, \xi) = 1_{[-\alpha, \alpha]}(\text{arg} \, \xi - \alpha_0)\)
- \(c(x, \xi) \equiv c(x, \text{arg} \, \xi)\) and \(h(x, \xi) \equiv h(x)\)

[Mandelbrot, Van Ness, 1968]
[Bonami, Estrade, 2003]
[Bierme, Richard, Moisan, 2012]
[Polisano, Clausel, Perrier, Condat, 2014]
Definition: Our new Gaussian model LAFBF is a local version of the elementary field

\[
B_{\alpha_0,\alpha}^H(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \frac{1_{[-\alpha,\alpha]}(\arg \xi - \alpha_0(x))}{\|\xi\|^{H+1}} d\hat{W}(\xi)
\]

[Polisano et al., 2014]
Definition: Our new Gaussian model LAFBF is a local version of the elementary field

\[
B_{\alpha_0,\alpha}^H(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \frac{1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0(x))}{\|\xi\|^{H+1}} d\hat{W}(\xi)
\]

[Polisano et al., 2014]

The orientation may vary spatially. \(\alpha_0\) is now a differentiable function on \(\mathbb{R}^2\).
Definition: Our new Gaussian model LAFBF is a local version of the elementary field

\[
B_{\alpha_0,\alpha}^H(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \mathbb{1}_{[-\alpha,\alpha]}(\arg \xi - \alpha_0(x)) \frac{\|\xi\|^{H+1}}{\|\xi\|^{H+1}} d\widehat{W}(\xi)
\]

The orientation may vary spatially. \(\alpha_0\) is now a differentiable function on \(\mathbb{R}^2\)

[Polisano et al., 2014]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = -\frac{\pi}{2} \]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.7 \]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.6 \]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.5 \]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.4 \]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.3 \]
Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.2 \]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.1 \]
Elementary field

\[\alpha_0 = 0 \]

\[\alpha = 0.05 \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.7 \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.6 \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.5 \]

Texture orientation

\[\mathbf{V}_{x_0} \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.4 \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.3 \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.2 \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.1 \]
Elementary field

\[\alpha_0 = -\frac{\pi}{3} \]

\[\alpha = 0.05 \]
Tangent field

For a random field X locally asymptotically self-similar of order H,

$$B_{\alpha_0,\alpha}^H(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \xi - \alpha_0(x))}{\|\xi\|^{H+1}} d\hat{W}(\xi)$$

[Tangent field.]

Y_{x_0} : tangent field of X at point $x_0 \in \mathbb{R}^2$

Deterministic case

Taylor’s expansion ↔ **Tangent field**

Stochastic case

[Benassi, 1997]

[Falconer, 2002]
Tangent field

For a random field X locally asymptotically self-similar of order H,

$$B^H_{\alpha_0,\alpha}(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \frac{1_{[-\alpha,\alpha]}(\arg \xi - \alpha_0(x))}{\|\xi\|^{H+1}} d\hat{W}(\xi)$$

Y_{x_0}: tangent field of X at point $x_0 \in \mathbb{R}^2$

[Benassi, 1997]
[Falconer, 2002]
Theorem. The LAFBF $B^H_{\alpha_0, \alpha}$ admits for tangent field Y_{x_0}:

$$Y_{x_0}(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \frac{1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0(x))}{\| \xi \|^{H+1}} d\hat{W}(\xi)$$

Y_{x_0} elementary field with global orientation $\alpha_0(x_0)$
Tangent field

\[
B^H_{\alpha_0, \alpha}(x) = \int_{\mathbb{R}^2} \left(e^{ix \cdot \xi} - 1 \right) \frac{1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0(x))}{\|\xi\|^{H+1}} d\tilde{W}(\xi)
\]

\textbf{Theorem.} The LAFBF \(B^H_{\alpha_0, \alpha} \) admits for tangent field \(Y_{x_0} \):

\[
Y_{x_0}(x) = \int_{\mathbb{R}^2} \left(e^{ix \cdot \xi} - 1 \right) \frac{1_{[-\alpha, \alpha]}(\arg \xi - \alpha_0(x_0))}{\|\xi\|^{H+1}} d\tilde{W}(\xi)
\]

\(\rightarrow Y_{x_0} \) \textit{elementary field} with global orientation \(\alpha_0(x_0) \)
Tangent field

\[B^{H}_{\alpha_0, \alpha}(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \frac{1[\arg \xi - \alpha_0(x)]}{\|\xi\|_{H+1}} d\hat{W}(\xi) \]

\textbf{Theorem.} The LAFBF \(B^{H}_{\alpha_0, \alpha} \) admits for tangent field \(Y_{x_0} \):

\[Y_{x_0}(x) = \int_{\mathbb{R}^2} (e^{ix \cdot \xi} - 1) \frac{1[\arg \xi - \alpha_0(x)]}{\|\xi\|_{H+1}} d\hat{W}(\xi) \]

\[\rightarrow Y_{x_0} \text{ elementary field with global orientation } \alpha_0(x_0) \]

\[B^{H}_{\alpha_0, \alpha}(x_0) \approx Y_{x_0}(x = x_0) \]
Simulation of tangent fields

Continuous formulation. Variogram of Y_{x_0}: [Bierme, Richard, Moisan, 2012]

$$
\nu_{Y_{x_0}}(x) = \frac{1}{2} \int_{\mathbb{R}^2} |e^{ix \cdot \xi} - 1|^2 f(x_0, \xi) d\xi
$$

$$
= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_0, \alpha}(x_0, \theta) |x \cdot u(\theta)|^{2H} d\theta
$$

$$
= \int_{-\pi/2}^{\pi/2} \tilde{\nu}_\theta(x \cdot u(\theta)) d\theta
$$
Simulation of tangent fields

Continuous formulation. Variogram of Y_{x_0}: [Bierme, Richard, Moisan, 2012]

\[
\nu_{Y_{x_0}}(x) = \frac{1}{2} \int_{\mathbb{R}^2} |e^{ix \cdot \xi} - 1|^2 f(x_0, \xi) d\xi
\]

\[
= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_0, \alpha}(x_0, \theta) |x \cdot u(\theta)|^{2H} d\theta
\]

\[
= \int_{-\pi/2}^{\pi/2} \tilde{\nu}_\theta(x \cdot u(\theta)) d\theta
\]
Simulation of tangent fields

Continuous formulation. Variogram of Y_{x_0}: [Bierme, Richard, Moisan, 2012]

$$v_{Y_{x_0}}(x) = \frac{1}{2} \int_{\mathbb{R}^2} |e^{ix \cdot \xi} - 1|^2 f(x_0, \xi) d\xi$$

in polar coordinates

$$= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_0, \alpha}(x_0, \theta) |x \cdot u(\theta)|^{2H} d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \tilde{v}_\theta(x \cdot u(\theta)) d\theta$$

$$\tilde{v}_\theta = \frac{1}{2} \gamma(H) c_{\alpha_0, \alpha}(x_0, \theta) \cdot |x|^{2H}$$

$$u(\theta) = (\cos \theta, \sin \theta)$$

$$\gamma(H) = \frac{\pi}{H \Gamma(2H) \sin(H\pi)}$$
Simulation of tangent fields

Continuous formulation. Variogram of Y_{x_0}: [Bierme, Richard, Moisan, 2012]

$$v_{Y_{x_0}}(x) = \frac{1}{2} \int_{\mathbb{R}^2} |e^{ix \cdot \xi} - 1|^2 f(x_0, \xi) d\xi$$

= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_0, \alpha}(x_0, \theta) |x \cdot u(\theta)|^{2H} d\theta

= \int_{-\pi/2}^{\pi/2} \tilde{v}_\theta(x \cdot u(\theta)) d\theta

variogram of a fractional brownian motion (FBM) of order H

$\tilde{v}_\theta = \frac{1}{2} \gamma(H) c_{\alpha_0, \alpha}(x_0, \theta) \cdot |^{2H}$

$u(\theta) = (\cos \theta, \sin \theta)$

$\gamma(H) = \frac{\pi}{H \Gamma(2H) \sin(H \pi)}$
Simulation of tangent fields

Continuous formulation. Variogram of Y_{x_0}: [Bierme, Richard, Moisan, 2012]

$$v_{Y_{x_0}}(x) = \frac{1}{2} \int_{\mathbb{R}^2} |e^{ix \cdot \xi} - 1|^2 f(x_0, \xi) d\xi$$

in polar coordinates

$$= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_0, \alpha}(x_0, \theta) |x \cdot u(\theta)|^{2H} d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \tilde{v}_\theta(x \cdot u(\theta)) d\theta$$

variogram of a fractional brownian motion (FBM) of order H

Y_{x_0}

= Infinite sum of independent rotating FBM of order H

$$\tilde{v}_\theta = \frac{1}{2} \gamma(H) c_{\alpha_0, \alpha}(x_0, \theta) \cdot |^2H$$

$u(\theta) = (\cos \theta, \sin \theta)$

$$\gamma(H) = \frac{\pi}{H \Gamma(2H) \sin(H\pi)}$$
Simulation of tangent fields

Discrete formulation. [Bierme, Richard, Moisan, 2012]

- $(\theta_i)_{1 \leq i \leq n}$ are n bands orientations and $\lambda_i = \theta_{i+1} - \theta_i$

- The turning band field is defined as

$$Y_{x_0}^{[n]}(x) = \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_i} c_{\alpha_0, \alpha}(x_0, \theta_i) B_i^H(x \cdot u(\theta_i))$$

- B_i^H are n independent FBM of order H

- Good approximation provided $\max_i \lambda_i \leq \varepsilon$
Simulation of tangent fields

Discrete formulation.

- $(\theta_i)_{1 \leq i \leq n}$ are n bands orientations and $\lambda_i = \theta_{i+1} - \theta_i$

- The turning band field is defined as

$$Y_{x_0}[n](x) = \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_i c_{\alpha_0,\alpha}(x_0, \theta_i)} B_i^H (x \cdot u(\theta_i))$$

- B_i^H are n independent FBM of order H

- Good approximation provided $\max_i \lambda_i \leq \varepsilon$

[Bierme, Richard, Moisan, 2012]
Simulation of tangent fields

Simulation along particular bands.

Discrete grid $r^{-1}\mathbb{Z}^2 \cap [0, 1]^2$ with $r = 2^k - 1, \ k \in \mathbb{N}^*$

Choose (θ_i) such that $\tan \theta_i = \frac{p_i}{q_i}$ and $\max \lambda_i \leq \epsilon$

Then $B_i^H(x \cdot u(\theta_i))$ becomes

$$\left\{ B_i^H \left(\frac{k_1}{r} \cos \theta_i + \frac{k_2}{r} \sin \theta_i \right) ; 0 \leq k_1, k_2 \leq r \right\} \stackrel{\mathcal{L}}{=} \left\{ B_i^H \left(\frac{\cos \theta_i}{rq_i} \right)^H (k_1 q_i + k_2 p_i) ; 0 \leq k_1, k_2 \leq r \right\}$$
Simulation of tangent fields

Simulation along particular bands.

- Discrete grid \(r^{-1}\mathbb{Z}^2 \cap [0, 1]^2 \) with \(r = 2^k - 1, k \in \mathbb{N}^* \)

- Choose \((\theta_i)\) such that \(\tan \theta_i = \frac{p_i}{q_i} \) and \(\max_i \lambda_i \leq \epsilon \)

- Then \(B_i^H(x \cdot u(\theta_i)) \) becomes

\[
\left\{ B_i^H \left(\frac{k_1}{r} \cos \theta_i + \frac{k_2}{r} \sin \theta_i \right) ; 0 \leq k_1, k_2 \leq r \right\} \overset{\mathcal{L}}{=} \left\{ \left(\frac{\cos \theta_i}{rq_i} \right)^H (k_1 q_i + k_2 p_i) ; 0 \leq k_1, k_2 \leq r \right\}
\]
Simulation of tangent fields

Simulation along particular bands.

- Discrete grid \(r^{-1} \mathbb{Z}^2 \cap [0, 1]^2 \) with \(r = 2^k - 1, k \in \mathbb{N}^* \)

- Choose \((\theta_i)\) such that \(\tan \theta_i = \frac{p_i}{q_i}\) and \(\max_i \lambda_i \leq \epsilon\)

- Then \(B_i^H(x \cdot u(\theta_i))\) becomes

\[
\left\{ \begin{array}{l}
B_i^H \left(\frac{k_1}{r} \cos \theta_i + \frac{k_2}{r} \sin \theta_i \right); 0 \leq k_1, k_2 \leq r \\
\left(\frac{\cos \theta_i}{rq_i} \right)^H \{ B_i^H (k_1 q_i + k_2 p_i); 0 \leq k_1, k_2 \leq r \}
\end{array} \right.
\]

Dynamic programming

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation
Simulation of tangent fields

Simulation along particular bands.

- Discrete grid $r^{-1} \mathbb{Z}^2 \cap [0, 1]^2$ with $r = 2^k - 1, k \in \mathbb{N}^*$

- Choose $\{\theta_i\}$ such that $\tan \theta_i = \frac{p_i}{q_i}$ and $\max_i \lambda_i \leq \epsilon$

- Then $B^H_i(x \cdot u(\theta_i))$ becomes

$$
\left\{ B^H_i \left(\frac{k_1}{r} \cos \theta_i + \frac{k_2}{r} \sin \theta_i \right) ; 0 \leq k_1, k_2 \leq r \right\} \triangleq \left\{ B^H_i \left(\frac{\cos \theta_i}{rq_i} \right)^H \left(\frac{\cos \theta_i}{rq_i} \right) \right\} \triangleq \left\{ B^H_i \left(k_1 q_i + k_2 p_i \right) ; 0 \leq k_1, k_2 \leq r \right\}
$$

Dynamic programming

Equispaced

Self-similarity

$B^H(\lambda; \cdot) \triangleq \lambda^H B^H(\cdot)$

Dynamic programming

Equispaced

[Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation]
Simulation of LAFBF using tangent fields

Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

$$B^H_{\alpha_0, \alpha}(k_1, k_2) = \gamma(H)^{1/2} \sum_{i=1}^{n} \sqrt{\lambda_i} c_{\alpha_0, \alpha}(k_1, k_2, \theta_i) \left(\frac{\cos \theta_i}{r q_i} \right)^H B^H_i (k_1 q_i + k_2 p_i)$$

[Polisano et al., 2014]
Simulation of LAFBF using tangent fields [Polisano et al., 2014]

Algorithm. For each pixel \(x_0 = (k_1, k_2) \in [0, r]^2 \)

\[
B^H_{\alpha_0, \alpha}((k_1, k_2)) \quad B^H_{\alpha_0, \alpha}(x_0) \approx Y_{x_0}(x = x_0) = \\
\gamma(H)^{1/2} \sum_{i=1}^{n} \sqrt{\lambda_i c_{\alpha_0, \alpha}((k_1, k_2), \theta_i)} \left(\frac{\cos \theta_i}{r q_i} \right)^H B^H_i(k_1 q_i + k_2 p_i)
\]
Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

$$\mathbf{B}_{\alpha_0, \alpha}^H((k_1, k_2))$$

$$= \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_i c_{\alpha_0, \alpha}((k_1, k_2), \theta_i)} \left(\frac{\cos \theta_i}{r q_i} \right)^H B_i^H (k_1 q_i + k_2 p_i)$$

[Polisano et al., 2014]
Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

\[
B_{\alpha_0, \alpha}^H((k_1, k_2)) = \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_i} c_{\alpha_0, \alpha}((k_1, k_2), \theta_i) \left(\frac{\cos \theta_i}{rq_i} \right)^H B_i^H(k_1 q_i + k_2 p_i)
\]
Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

$$B^H_{\alpha_0, \alpha}((k_1, k_2))$$

$$= \gamma(H) \frac{1}{2} \sum_{i=1}^{n} \sqrt{\lambda_i c_{\alpha_0, \alpha}((k_1, k_2), \theta_i)} \left(\frac{\cos \theta_i}{rq_i} \right)^H B^H_i(k_1q_i + k_2p_i)$$

n turning bands θ_i
Simulation of LAFBF using tangent fields

Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

$$B_H^{\alpha_0, \alpha}((k_1, k_2))$$

$$= \gamma(H)^{1/2} \sum_{i=1}^{n} \sqrt{\lambda_i c_{\alpha_0, \alpha}((k_1, k_2), \theta_i)} \left(\frac{\cos \theta_i}{r q_i} \right)^H B_i^H (k_1 q_i + k_2 p_i)$$

n turning bands θ_i

$1_{[-\alpha, \alpha]}(\theta_i - \alpha_0((k_1, k_2))) \neq 0$

$$\iff \left| \theta_i - \alpha_0((k_1, k_2)) \right| \leq \alpha$$
Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

$$B^{H}_{\alpha_0, \alpha}((k_1, k_2))$$

$$= \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_i} c_{\alpha_0, \alpha}((k_1, k_2), \theta_i) \left(\frac{\cos \theta_i}{rq_i} \right)^H B^H_i (k_1 q_i + k_2 p_i)$$

n turning bands θ_i

$1_{[-\alpha, \alpha]}(\theta_i - \alpha_0((k_1, k_2))) \neq 0$

$$\iff |\theta_i - \alpha_0((k_1, k_2))| \leq \alpha$$
Simulation of LAFBF using tangent fields

Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

$$B_{\alpha_0, \alpha}^H((k_1, k_2)) = \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_i c_{\alpha_0, \alpha}((k_1, k_2), \theta_i)} \left(\frac{\cos \theta_i}{rq_i} \right)^H B_i^H(k_1 q_i + k_2 p_i)$$

- n turning bands θ_i
- Few bands in the cone

$$\mathbb{1}_{[-\alpha, \alpha]}(\theta_i - \alpha_0((k_1, k_2))) \neq 0 \quad \iff \quad |\theta_i - \alpha_0((k_1, k_2))| \leq \alpha$$
Simulation of LAFBF using tangent fields

Algorithm. For each pixel $x_0 = (k_1, k_2) \in [0, r]^2$

$$B^{H}_{\alpha_0, \alpha}((k_1, k_2))$$

$$= \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_i c_{\alpha_0, \alpha}((k_1, k_2), \theta_i)} \left(\cos \theta_i \right)^{H} B^{H}_i (k_1 q_i + k_2 p_i)$$

n turning bands θ_i

Few bands in the cone

$\mathbb{1}_{[-\alpha, \alpha]}(\theta_i - \alpha_0((k_1, k_2))) \neq 0$ \iff $|\theta_i - \alpha_0((k_1, k_2))| \leq \alpha$

Complexity $O(r^2 \log n)$
Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

$\vec{V}_1^{(x,y)} = (\cos(-\pi/2 + y), \sin(-\pi/2))$

Numerical experiments

Parameters

$r = 255 \quad H = 0.2$

$\alpha = 10^{-1} \quad \epsilon = 10^{-2}$
Texture modeling by Gaussian field with prescribed local orientation

\[\tilde{V}_{x,y}^1 = (\cos(-\pi/2 + y), \sin(-\pi/2)) \]

Texture with prescribed local orientation at each point \(x_0 \) given by a vector field

\[\tilde{V}_{x_0} = u(\alpha_0(x_0)) \]

Parameters

\[r = 255 \quad H = 0.2 \]
\[\alpha = 10^{-1} \quad \epsilon = 10^{-2} \]
Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

\[\vec{V}_{(x,y)}^1 = (\cos(-\pi/2 + y), \sin(-\pi/2)) \]

Texture with prescribed local orientation at each point \(x_0 \) given by a vector field

\[\vec{V}_{x_0} = u(\alpha_0(x_0)) \]

A zoom around a point \(x_0 \) shows that locally a LAFBF behaves as an elementary field

Parameters

\[r = 255 \quad H = 0.2 \]
\[\alpha = 10^{-1} \quad \epsilon = 10^{-2} \]
Numerical experiments

\[\tilde{V}^1_{(x,y)} = (\cos(-\pi/2 + y), \sin(-\pi/2)) \]

Texture with prescribed local orientation at each point \(x_0 \) given by a vector field
\[\tilde{V}_{x_0} = u(\alpha_0(x_0)) \]

A zoom around a point \(x_0 \) shows that locally a LAFBF behaves as an elementary field

Regularized version of the anisotropy function

\[f^{1/2}(x_0, \xi) = \frac{c_{\alpha,0}(x_0, \arg \xi)}{||\xi||^{\alpha+1}} \]

Parameters

\[r = 255 \quad H = 0.2 \]
\[\alpha = 10^{-1} \quad \epsilon = 10^{-2} \]
Numerical experiments

\[
\tilde{V}^1_{(x,y)} = (\cos(-\pi/2 + y), \sin(-\pi/2))
\]

Texture with prescribed local orientation at each point \(x_0\) given by a vector field

\[
\tilde{V}_{x_0} = u(\alpha_0(x_0))
\]

A zoom around a point \(x_0\) shows that locally a LAFBF behaves as an elementary field

Regularized version of the anisotropy function

\[
f^{1/2}(x_0; \xi) = \frac{c_{\alpha,\alpha}(x_0, \arg \xi)}{||\xi||^{\alpha+1}}
\]

Parameters

\[
\begin{align*}
 r &= 255 & H &= 0.2 \\
 \alpha &= 10^{-1} & \epsilon &= 10^{-2}
\end{align*}
\]
Numerical experiments

\[\vec{V}^2_{(x,y)} = (\cos(\cos(36xy)), \sin(\cos(36xy))) \]

\[\vec{V}^3_{(x,y)} = \nabla F(x, y) \]

\[F(x, y) = (4x - 2)e^{-(4x-2)^2-(4y-2)^2} \]
Numerical experiments

\[\vec{V}^2_{(x,y)} = (\cos(\cos(36xy)), \sin(\cos(36xy))) \quad \vec{V}^3_{(x,y)} = \nabla F(x, y) \]

\[F(x, y) = (4x - 2)e^{-(4x-2)^2-(4y-2)^2} \]
Numerical experiments

\[\mathbf{V}^2_{(x,y)} = (\cos(\cos(36xy)), \sin(\cos(36xy))) \]

\[\mathbf{V}^3_{(x,y)} = \nabla F(x, y) \]

\[F(x, y) = (4x - 2)e^{-(4x-2)^2-(4y-2)^2} \]
Numerical experiments

\[V^1_{(x,y)} = (\cos(-\pi/2 + y), \sin(-\pi/2)) \]

\[H = 0.2 \quad H = 0.5 \]
Numerical experiments

$V_1^{(x,y)} = (\cos(-\pi/2 + y), \sin(-\pi/2))$

$H=0.2$ $H=0.5$
Numerical experiments

\[\vec{V}^1_{(x,y)} = (\cos(-\pi/2 + y), \sin(-\pi/2)) \]

\(H = 0.2 \) \hspace{1cm} \(H = 0.5 \)
Conclusion and future work

Conclusion
Conclusion

Introduce a new stochastic model defined as a local version of an AFBF.
Conclusion

- Introduce a **new stochastic model**
 defined as a local version of an AFBF.
- Simulations based on **tangent field formulation**
 and the **turning bands method** produce textures with
 prescribed local orientations.
Introduction

Introduce a **new stochastic model** defined as a local version of an AFBF.

Simulations based on **tangent field formulation** and the **turning bands method** produce textures with prescribed local orientations.
Conclusion and future work

Conclusion
- Introduce a **new stochastic model** defined as a local version of an AFBF.
- Simulations based on **tangent field formulation** and the **turning bands method** produce textures with prescribed local orientations.

Future work
- Extensions of our model include
 - Hurst index may **vary spatially**.
Conclusion

- Introduce a **new stochastic model** defined as a local version of an AFBF.
- Simulations based on **tangent field formulation** and the **turning bands method** produce textures with prescribed local orientations.

Future work

- Extensions of our model include Hurst index may **vary spatially**.
Conclusion and future work

Conclusion
- Introduce a *new stochastic model* defined as a local version of an AFBF.
- Simulations based on *tangent field formulation* and the *turning bands method* produce textures with prescribed local orientations.

Future work
- Extensions of our model include Hurst index may *vary spatially*.
Selected papers

Questions ?
Thank you for your attention.
Dynamic programming. The choice of the bands orientation \((\theta_i)_{1 \leq i \leq n}\) is governed by the computational cost of the \(B_i^H\)'s within dynamic programming.

Let the error \(\epsilon\) fixed. Taking \(N = \lceil \frac{1}{\tan \epsilon} \rceil\) consider the following set:

\[
\mathcal{V}_N = \left\{ (p, q) \in \mathbb{Z}^2 / -N \leq p \leq N, 1 \leq q \leq N, p \wedge q = 1, -\frac{\pi}{2} < \arctan \left(\frac{p}{q} \right) < \frac{\pi}{2} \right\}
\]

The aim is to find \(n\) pairs in the set \(\mathcal{V}_N\) which minimize the following global cost:

\[
C'(\Theta) = \sum_{k=1}^{s} C'(r(|p_{i_k}| + q_{i_k}))
\]

where \(C'(\ell)\) is the cost of one FBM \(B_i^H\) in \(O(n \log n)\), under the constraint \(\max_i (\theta_{i+1} - \theta_i) \leq \epsilon\)