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I. NOTATIONS EXPLAINED ON A DIAGRAM

Recall that,

u] = s] ∗ φ1 : (t1, t2) ∈ P 7→
K∑
k=1

αk
cos(θk)

ϕ1

(
t1 + tan(θk)t2 +

γk
cos(θk)

)
. (1)

Since ϕ1 is periodic and bandlimited, it is determined by W degrees of freedom only. That is, there exist coefficients g[n],
n = 0, . . . ,W − 1, such that ϕ1 is a linear combination of shifted Dirichlet kernels:

ϕ1(t1) =

W−1∑
n=0

g[n]
sin
(
π(t1 − n)

)
W sin

(
π(t1 − n)/W

) , ∀t1 ∈ R. (2)

This is a corollary of the Nyquist-Whittaker-Shannon interpolation theorem.

Let be two convolutions functions ϕ1 and ϕ2 satisfying assumptions described in the paper, then the discrete filter associated
g and h can be used to perform exact convolutions. Given K lines with parameters (θk, γk, αk), one can generated the image
v] by formula (1) and (2).

The Fig. 1 illustrates the relation between all continuous and discrete variables. Our goal is to recover the parameters
(θk, γk, αk) from the degraded image y, by performing the minimization algorithm in the Fourier domain, that is on the
bottom line of Fig. 1.
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Fig. 1: Relation between variables.



II. SEMIDEFINITE PROGRAM

Proposition 1: The atomic norm

‖x‖A = inf

{
K∑
k=1

ck : x =

K∑
k=1

cka(fk, φk),K 6 N

}
can be characterized by the following semidefinite program:

‖x‖A = min
u∈Cn,u0>0

{
u0 :

[
T(u) x
x∗ u0

]
< 0

}
. (3)

Proof:
Denote the right-hand side of (3) by SDP (x).

• Suppose x =
∑K
k=1 cka(fk, φk) with ck > 0.

Defining u =
∑K
k=1 cka(fk), then u0 =

∑K
k=1 ck. The atoms are [a(fk)]j = ei2πfkj , hence

T(a(fk)) =


1 e−i2πfk · · · e−i2πfk(N−1)

ei2πfk 1 · · · e−i2πfk(N−2)

...
...

. . .
...

ei2πfk(N−1) ei2πfk(N−2) · · · 1

 (4)

(5)

=


1

ei2πfk

...
ei2πfk(N−1)

 [1 e−i2πfk · · · e−i2πfk(N−1)
]

(6)

(7)
= a(fk)a(fk)∗ (8)

We deduce that

T (u) =

K∑
k=1

ckT(a(fk)) (9)

=

K∑
k=1

cka(fk)a(fk)∗ (10)

=

K∑
k=1

cka(fk, φk)a(fk, φk)∗ (11)

Therefore, the matrix [
T(u) x
x∗ u0

]
=

K∑
k=1

[
a(fk, φk)

1

] [
a(fk, φk)

1

]∗
is positive semidefinite. Given u0 =

∑K
k=1 ck, we get SDP (x) 6

∑K
k=1 ck.

Since this holds for any decomposition of x, we conclude that SDP (x) 6 ‖x‖A.

• Conversely, let u ∈ Cn a vector such that u0 > 0 and
[
T(u) x
x∗ u0

]
< 0. In particular we have T(u) < 0.

The Caratheodory theorem insures that P < 0 if and only if it exists a vector v ∈ Cn such that

v =

r∑
k=1

dka(fk)

with r 6 N , dk > 0, distincts fk, r = rank(P ) and P = T(v).

We apply this theorem to P = T(u).



Let denote matrices D = diag[d1, . . . , dr] and

V =
[
a(f1) · · · a(fr)

]
=


1 1 · · · 1

ei2πf1 ei2πf2 · · · ei2πfr

ei2πf12 ei2πf22 · · · ei2πfr2

...
...

...
...

ei2πf1(N−1) ei2πf2(N−1) · · · ei2πfr(N−1)


By linearity of the operator T:

T(v) =

r∑
k=1

dkT(a(fk)) (12)

=

r∑
k=1

dka(fk)a(fk)∗ (13)

= V DV ∗ (14)

Since T(a(fk)) contains only ones on the diagonal, we have 1
N Tr(T(v)) =

∑r
k=1 dk > 0. Besides, 1

N Tr(T(u)) = u0 and
T(u) = T(v), therefore u0 > 0.

Let be M a general block matrix M =

[
A B
BT C

]
, the Schur complement gives

[C � 0⇒M < 0]⇒ [A−BC−1BT < 0]

We apply this lemma to M =

[
T(u) x
x∗ u0

]
, with A = T(u), B = x and C = u0. The left term is verified by hypothesis,

hence
T(u)− u−10 xx∗ < 0⇔ V DV ∗ − u−10 xx∗ < 0

We define the square matrix Vr by extracting the r first rows of V , which is a Vandermonde matrix, whose determinant is
det(Vr) =

∏
16i<j6r(fj − fi). Since we assumed fi 6= fj , Vr is invertible, and rank(V ) = r. Let define v : Cr → CN and

v∗ : CN → Cr the endomorphisms corresponding to matrices V and V ∗. We have rank(v∗) = rank(v) = r. By the rank-nullity
theorem:

rank(v∗) + dim(Ker v∗) = dim(CN )⇒ dim(Kerv∗) = N − r

Thus, it exists a vector p ∈ CN such that V ∗p = 0⇔ p∗V = 0.

Consequently,

p∗(V DV ∗ − u−10 xx∗)p > 0 ⇔ (p∗V )D(V ∗p)− u−10 p∗xx∗p > 0 (15)
⇔ u−10 ‖p∗x‖22 6 0 (16)
⇔ ‖p∗x‖22 = 0 (17)
⇔ p∗x = 0 (18)
⇔ p ⊥ x = 0 (19)

Since p ∈ Ker v∗, then x ∈ (Ker v∗)⊥ = Im v, so it exists a vector w ∈ Cr such that x = V w =
∑r
k=1 wka(fk), hence

V DV ∗ − u−10 V ww∗V ∗ < 0

Besides, Im v∗ ⊂ Cr and dim(Im v∗) = rank(r) = r = dim(Cr), thus Im v∗ = Cr and v∗ is surjective. Consequently, it
exists a vector q ∈ CN such that V ∗q = sign(w) =

[
w1/|w1| · · · wr/|wr|

]T
, and



q∗(V DV ∗ − u−10 V ww∗V ∗)q > 0 ⇔ (q∗V )D(V ∗q)− u−10 (p∗V )ww∗(V ∗p) > 0 (20)
⇔ sign(w)∗Dsign(w)− u−10 sign(w)∗ww∗sign(w) > 0 (21)

⇔
r∑

k=1

dk

∣∣∣∣ wk|wk|
∣∣∣∣2 − u−10

(
r∑

k=1

w̄k
|wk|

wk

)2

> 0 (22)

⇔ u20 >

(
r∑

k=1

|wk|

)2

(23)

⇔ u0 >
r∑

k=1

|wk| > ‖x‖A (24)

Taking the infimum leads to SDP (x) > ‖x‖A.

III. SECOND VERSION : RELAXATION OF THE CHAMBOLLE-POCK ALGORITHM

We can also considered the optimization problem as a relaxed version of the Chambolle-Pock algorithm:

X? = arg min
X∈H

{G(X) + H(L(X))} , (25)

with G = 1
2‖A · −ŷr‖

2
W which is proximable, Hx =

∑N
i=0Hixi with Hi = ιC and Li ∈ {Lm1 , L

n2
2 } for i < N , HN = ιB

and LN = Id. Since we have

p = proxτG(ŵr)⇔ ŵr − p = ∇(τG)(p)⇔ ŵr − p = τA?(Ap− ŷr)⇔ ŵr + τA?ŷr = (Id + τA?A)p

then the proximal operator has the following expression:

proxτG(ŵr) = (Id + τA∗A)−1(ŵr + τA?ŷr). (26)

The operator A acts on vectors ŵm. Let be Ah the matrix corresponding to the convolution by the filter h. Then, for each
m = 0, . . . ,M , we have (Id + τA∗A)ŵm = (Id + τ |ĝ[m]|2A∗hAh)ŵm, whose we are able to compute and store these M + 1
inverse matrix. We recover Algorithm 1 with F = 0. Since β = 0, we have no restriction on τ , and δ = 2. We deduce that
σ = 1/(τµ). These relaxed conditions enable to speed up the algorithm process.

IV. THE HOUGH AND RADON TRANSFORMS APPLIED ON LINES DETECTION

A. Hough transform
The Hough transform tackles the problem of detecting straight lines, in a way consisting to convert this problem into peaks

detection in a parameter space. The transformation is done on a binary image, generally obtained after processing the original
image by an edge detector. In our case, dealing with blurred image, this pre-processing is not relevant since the lines have
some width. Thus, in order to convert the image to a binary one, we apply a certain threshold. We suggest these two possibilities:

• By calling the matlab routine IM2BW.

This will apply a threshold on luminance of the image. We obtain the image Fig. 2 (a), on which we perform the Hough
transform, the resulting image is displayed on Fig. 2 (b). The peaks detection (in green), and so the lines estimation (Fig.
2 (c)), altogether fail, due to some artifacts, which have been considered by Errors, Xiaodong Tao and Alwyn Eades, who
propose in their article ”Errors, Artifacts and Improvements in EBSD Processing and Mapping” a method to remove these
artifacts. Nevertheless, as you can seen on Fig. 2 (b), the peaks are in any case spread out because of the binary line’s width,
which provides a very coarse estimation of the parameters.

• By applying manually a threshold on the pixel values.

This will keep the pixel greater than the threshold at stake. For instance, for a threshold of 230, we obtain the image Fig.
3 (a). The peaks detection is now working, and the lines estimations seems to be correct. This method provides an estimation
with a mean error of 10−2 for θk, and 10−1 for γk, which is not significantly improved by decreasing the discretization steps
of the process. Remark that this method cannot be applied if the lines have different amplitude values, because of the threshold.
For the same reason, it is not relevant for image with a large amount of blur or noise.

Therefore, we turned toward the Radon transform, which appears to be more adapted for our topic.
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Fig. 2: (a) The binary version of x], (b) the corresponding Hough transform with the estimaed peaks, (c) the estimated lines
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Fig. 3: (a) The thresholded version of x], (b) the corresponding Hough transform with the estimaed peaks, (c) the estimated
lines

B. Radon transform

The Hough transform is actually related to the famous Radon transform, as a kind of discretization of the latter. The Radon
transform can be done directly on grayscale images, and the peaks seem to be less spread than the peaks from the Hough
transform, as we can see on Fig. 4 (a). This approach has the advantage to achieve the same mean error of 10−1 for γk, and
a better rate of 10−3 for θk. Notice that even by decreasing the discretization steps of the process, we rapidly reach a plateau,
as illustrated by Fig. 5. Besides, the Radon transform is robust to noise, the peaks remain well detected, as you can observe
on Fig. 4 (b). However, this method fail for a large blur, such as presented in the third experiment, the peeks are not clearly
recognizable anymore, as you observe on Fig. 4 (c).

To sum up, the Radon transform is more suitable than the Hough transform for detecting lines in a degraded image.
But, in both cases, they come up against a discrete limit as soon as we are looking for a greater accuracy. In contrary, our
super-resolution method enables to achieve an infinite precision for line’s parameters.
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Fig. 4: The Radon transform of the image y for experiment 1, 2 and 3. The theoretical parameters of lines are in green.
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Fig. 5: Variation of the accuracy with respect to the angle step of the Radon transform.


