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Outline

The objective of this short course is to provide some knowledge of
time series, with applications in finance. For that we need to
understand the particular characteristics of these kinds of series,
introduce some statistical tools and gain experience.

Part I: Introductory principles

Part II: Linear Time Series Models

Part III: More Fancy Models...

Cláudia Nunes Time Series in Mathematical Finance



Part I: Introductory principles
Part II: Linear Time Series Models

Part III: More fancy models...

Main goal of the course
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Figura : Dow Jones Industrial Average Yearly Returns, reporting to
1975-2012

Can we predict what will happen to the Dow Jones Industrial
Average Yearly Returns for the next 5 years?
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Time Series

We want to use time series in order to answer questions like this
one.
What is a time series? It is a set of repeated observations of the
same variable (???? is this true???) (such as the GNP or a stock
return). We can write a time series as:

{X1,X2, . . . ,XT}

or simply as {Xt}. The subscript t indicates time...
The word time series is used interchangeably to denote a sample,
{xt}, and a probability model for that sample.
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Models

Time-series consists of interesting parametric models for the joint
distribution of {Xt}.
The models impose structure, which we must evaluate to see if it
captures the features that we think are present in the data.
Also we need to reduce the estimation problem to the estimation
of a few parameters of the time-series model.
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Independence

Usually in statistics one assumes that the random variables are
independent over time. However time series are typically not i.i.d.,
which is what makes them interesting.
For example, if the return of a stock is today unusually high, then
probably tomorrow will also be unusually high, until it drops down.

Cláudia Nunes Time Series in Mathematical Finance



Part I: Introductory principles
Part II: Linear Time Series Models

Part III: More fancy models...

Miscellaneous
Simple Component Analysis
Linear regression models
Exponential smoothing

Part I: Introductory principles
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The theory of time series includes the following aspects:

stationarity of the data

dynamic dependence

autocorrelation

modeling/estimation

forecasting

Linear models means that the model attempt to capture the linear
relationship between Xt (the data) and information available prior
to time t.
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Stationarity

A time-series {Xt} is strictly stationary if:

(Xt1 ,Xt2 , . . . ,Xtk ) =D (Xt1+t ,Xt2+t , . . . ,Xtk+t), ∀t, t1, t2, tk , k

(joint distribution is invariant under time shift)

This is a very strong condition, hard to verify empirically.

Weaker version: A time-series {Xt} is weakly-stationary if:

E [Xt ] = µ, Cov(Xt ,Xt−l) = γl , ∀t, l
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Properties of stationarity

Strong stationarity does not ⇒ weak stationarity, as E [X 2
t ]

must be finite (e.g., the Cauchy distribution... not even the
first order moment is finite!)

Strong stationarity+finite second order moments ⇒ weak
stationarity.

Weak stationarity does not ⇒ strong stationarity; the
exception occurs for gaussian processes, so:

Weak stationarity + normality ⇒ strong stationarity.
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Two simulated time series processes, one weakly-stationary the
other non-stationary.

25/06/13 Stationarycomparison.png (640×640)

https://upload.wikimedia.org/wikipedia/en/e/e1/Stationarycomparison.png 1/1

Figura : Two simulated time series processes, one stationary and the
other non-stationary.
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From now one, when we say:

Stationary

we mean

Weakly-stationary
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Covariance and Correlation Functions

γl = Cov(Xt ,Xt−l) is called the lag-l autocovariance, which
has the following properties:

γ0 = Var [Xt ] (assuming stationarity)
γl = γ−l

ρl = γl
γ0

is called the lag-l autocorrelation.

ρ0 = 1
ρl = ρ−l

ρ̂l =
∑T

t=l+1(Xt−X̄ )(Xt−l−X̄ )∑T
t=l+1(Xt−X̄ )2

is the lag-l sample autocorrelation

/ empirical autocorrelation.
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Tests for the Significance of Correlation

Testing individual ACF: to test H0 : ρl = 0 vs H1 : ρl 6= 0:

Z =
ρ̂l√

(1 + 2
∑l−1

i=1 ρ̂i
2)/T

∼ N(0, 1)

Reject H0 if |zobs | > φ−1(1− α/2).

Portmanteau test: to test H0 : ρ1 = ρ2 = . . . = ρm = 0:

Q(m) = T
m∑
l=1

ρ̂l
2 ∼a χ

2
(m)

Ljung and Box test: similar to the previous one, with:

Q(m) = T (T + 2)
m∑
l=1

ρ̂l
2

T − l
∼a χ

2
(m)

Note: the selection of m may affect the performance of the Q(m)
statistics in the last two tests. Simulation studies suggest the
m ≈ ln(T ).
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The correlogram analysis is a key tool to explore the
interdependency of the observation values.

It can also be used as a tool to identify the model and the
estimate the orders of its components.
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Example: data from TUI

TUI AG is a German multinational travel and tourism
company, dedicated to tourism, shipping, and logistics.

Today it is one of the world’s largest tourist firms with
interests across Europe. It owns travel agencies, hotels,
airlines, cruise ships and retail stores.

It is quoted in the LSE (TUI Travel PLC (TT.L) -LSE)

Data available online include TUI stock values, in particular,
daily values, quoting open, high, low, close and volume values.

Data reports from 13/01/2000 until 14/05/2002 (more recent
data! check http://uk.finance.yahoo.com/q/hp?s=TT.L)
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Figura : Plot of close values and difference of order 1 of close values
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Histogram of diff(tui[, 5])

diff(tui[, 5])
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Figura : Histogram and QQPlot for difference of order 1 of close values
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Figura : Empirical ACF for close values
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Figura : Empirical ACF and PACF for difference of order 1 of close values
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Partial autocorrelation function

In addition to the autocorrelation between Xt and Xt+k , we may
want to investigate the correlation between them after their

dependency on Xt+1, . . . ,Xt+k−1 has been removed.

φkk = Corr (Xt ,Xt+k |Xt+1, . . . ,Xt+k−1)
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φkk =

∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2 . . . ρk−2 ρ1

ρ1 1 ρ1 . . . ρk−3 ρ2
...

...
...

...
...

...
ρk−1 ρk−2 ρk−3 . . . ρ1 ρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2 . . . ρk−2 ρk−1

ρ1 1 ρ1 . . . ρk−3 ρk−2
...

...
...

...
...

...
ρk−1 ρk−2 ρk−3 . . . ρ1 1

∣∣∣∣∣∣∣∣∣
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Filters

Recall that in the simple linear regression model, we assume
the following:

Yi = β0 + β1xi + εi

with E [εi ] = 0, Var [εi ] = σ2 and Cov(εi , εj) = 0, for i 6= j
So we decompose the response variable, Y , in a linear trend
plus an error term.
A key concept in traditional time series analysis is the
decomposition of a given time series {Xt} into a trend {Tt},
a seasonal component {St} and the remainder, {εt}.
A common method for obtaining the trend is to use linear
filters on given time series:

Tt =
∞∑

i=−∞
λiXt+i
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For the TUI data:

λi = {1
5 , . . . ,

1
5} (5 times) → weekly averages

λi = { 1
25 , . . . ,

1
25} (25 times) → monthly averages

λi = { 1
81 , . . . ,

1
81} (81 times) → quaterly averages
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Figura : Linear filters for weekly, monthly and quaterly averages

The irregularity decreases as we filter more, ie, if we weight more
observations
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Decomposition of time series

It is often assumed that many macroeconomic time series are
subject to two sorts of forces:

those that influence the long-run behavior of the series

those that influence the short-run behavior of the series.

So, for example, growth theory focuses on the forces that influence
long-run behavior whereas business cycle theory focuses on the
forces that influence short-run behavior.
Other reasons - to transform a nonstationary series into a
stationary series by removing the trend!
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Components

Another possibility for evaluating the trend of a time series is to
use nonparametric regression techniques:

Xt = Tt + Ct + St + εt

Tt is the Trend Component, that reflects the long term
progression of the series;

Ct is the Cyclical Component, that describes repeated but
non-periodic fluctuations, possibly caused by the economic
cycle;

St , the Seasonal Component, reflecting seasonal variation;

εt , the Irregular Component (or ”noise”), that describes
random, irregular influences. It represents the residuals of the
time series after the other components have been removed.
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Weekly decomposition

For the TUI data: weekly, monthly or quarterly seasonal
decomposition?
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Monthly decomposition

20
30

40
50

da
ta

-0
.4

-0
.2

0.
0

0.
2

0.
4

se
as
on
al

25
30

35
40

45
50

55

tre
nd

-8
-6

-4
-2

0
2

4

5 10 15 20 25

re
m
ai
nd
er

time

Figura : Monthly decomposition
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Quaterly decomposition
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Figura : Quaterly decomposition
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When seasonal decomposition really works...

Data: monthly beer production in Australia from Jan. 1956 to
Aug. 1995
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Decomposition based on differences

An alternative to the trend stationary assumption to account for
trend behavior in a time series is to assume that the series is
difference stationary, i.e., {Xt} is stationary in differenced form.
A time series {Xt} is difference stationary of order d , if

{∆dXt} is stationary

{∆d−1Xt} is not-stationary

Note:

∆Xt = Xt − Xt−1

∆2Xt = Xt − 2Xt−1 + Xt−2

∆dXt =
∑d

i=0(−1)i (di )Xt−i (prove this!)
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Figura : Tui, ∆Tui and ∆2Tui series

∆Tui looks already stationary; there is no need for a second order
difference...
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Identifying the order of differencing

Beware of over-differencing! This is one of the common errors that
practioners do!

Rule 1: If the series has positive autocorrelations out a high
number of lags, then it probably need a higher order of
differencing. Differencing tends to introduce negative
correlation. If you apply more than once, lag-1 autocorrelation
will be driven even further in the negative direction.

Rule 2: If the lag-1 autocorrelation is zero or even negative,
then the series does not need further differencing. If the lag-1
autocorrelation is more negative than -0.5, this may mean the
series has been overdifferenced. Check if there are patterns
(like up-down-up) in the transformed series.
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Rule 3: IThe optimal order of differencing is often the order of
differencing at which the standard deviation is lowest.

Rule 4: A model with no orders of differencing assumes that
the original series is stationary. A model with one order of
differencing assumes that the original series has a constant
average trend...
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Figura : Tui, ∆Tui and ∆2Tui series

∆Tui looks already stationary; there is no need for a second order
difference...
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Figura : Empirical ACF of Tui, ∆Tui and ∆2Tui series
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Box-Cox transformations

What happens if even with differences, we cannot stabilize the
data? In particular, we cannot stabilize the variance...
Box-Cox transformations is a family of power transforms, used
precisely to stabilize variance, make the data more normal
distribution-like, improve the validity of measures of association
such as the Pearson correlation between variables and for other
data stabilization procedures.

Y λ
t =

{
Xλt −1
λ λ 6= 0

ln Xt λ = 0
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Some commonly used transformations

Values of λ Transformation

−1.0 1
Xt

−0.5 1√
Xt

0 ln Xt

0.5
√

Xt

1.0 Xt
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The Box-Cox Power transformation only works if all the data is
positive

This can be achieved by adding a constant c to all data such that
it all becomes positive before it is transformed.
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The Box-Cox Power transformation and Differencing

A variance stabilizing transformation, if needed, should be
performed before any other analysis, such as diferencing.

Frequently, the transformation not only stabilizes the variance,
but also improves the approximation of the distribution by a
normal distribution.
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Example

Data that is not normal at all...
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Figura : Data, histogram and log-likelihood as a function of the power λ

Best Box-Cox transformation: λ = 0.22
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Linear Regression model

In many applications, the relationship between two time series is of
major interest.

The market model in finance is an example that relates the
return of an individual stock to the return of a market index.

The term structure of interest rates is another example in
which the time evolution of the relationship between interest
rates with different maturities is investigated.

These examples lead to the consideration of a linear regression in
the form

Yt = β0 + β1Yt + εt

where {Xt} and {Yt} are two time series.
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Correlated error terms

In the usual LRS, we assume that Cov(εi , εj) = 0 for i 6= j . But in
real applications this is hardly the case, and so we end up with an
error term that is serially correlated!
Consequence: the LS estimates of β0 and β1 may not be
consistent!
This is one of the most commonly misued econometric models,
because the serial dependence on the errors is overlloked...
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Regression for TUI data

Model: Tuit = β0 + β1t + εt
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Figura : Regression models adjusted to data Tui, Log(Tui) and
Diff(Log(Tui))
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Summary statistics for the regression of Tui

Call:	
  
lm(formula	
  =	
  log(tui.5)	
  ~	
  t)	
  
	
  
Residuals:	
  
	
  	
  	
  	
  	
  Min	
  	
  	
  	
  	
  	
  	
  1Q	
  	
  	
  Median	
  	
  	
  	
  	
  	
  	
  3Q	
  	
  	
  	
  	
  	
  Max	
  	
  
-­‐0.54237	
  -­‐0.08303	
  	
  0.02603	
  	
  0.08575	
  	
  0.21146	
  	
  
	
  
Coefficients:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Estimate	
  Std.	
  Error	
  t	
  value	
  Pr(>|t|)	
  	
  	
  	
  	
  
(Intercept)	
  3.386e+00	
  	
  9.832e-­‐03	
  	
  344.33	
  	
  	
  <2e-­‐16	
  ***	
  
t	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7.112e-­‐04	
  	
  2.888e-­‐05	
  	
  	
  24.63	
  	
  	
  <2e-­‐16	
  ***	
  
-­‐-­‐-­‐	
  
Signif.	
  codes:	
  	
  0	
  ‘***’	
  0.001	
  ‘**’	
  0.01	
  ‘*’	
  0.05	
  ‘.’	
  0.1	
  ‘	
  ’	
  1	
  	
  
	
  
Residual	
  standard	
  error:	
  0.1192	
  on	
  587	
  degrees	
  of	
  freedom	
  
Multiple	
  R-­‐squared:	
  0.5082,	
  Adjusted	
  R-­‐squared:	
  0.5073	
  	
  
F-­‐statistic:	
  606.5	
  on	
  1	
  and	
  587	
  DF,	
  	
  p-­‐value:	
  <	
  2.2e-­‐16	
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Analysis of residuals
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Figura : Analysis of residuals for Diff (Tui)
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Regression for Beer data

Model 1: log(Beert) = β0 + β1t + β2t2 + εt
Model 2:
log(Beert) = β0 + β1t + β2t2 + β3cos( 2π

12 ) + γsin( 2π
12 ) + εt
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Figura : Regression models 1 and 2
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Summary statistics for the regression of beer

Call:	
  
lm(formula	
  =	
  lbeer	
  ~	
  t	
  +	
  t2	
  +	
  sin.t	
  +	
  cos.t)	
  
	
  
Residuals:	
  
	
  	
  	
  	
  	
  Min	
  	
  	
  	
  	
  	
  	
  1Q	
  	
  	
  Median	
  	
  	
  	
  	
  	
  	
  3Q	
  	
  	
  	
  	
  	
  Max	
  	
  
-­‐0.33191	
  -­‐0.08655	
  -­‐0.00314	
  	
  0.08177	
  	
  0.34517	
  	
  
	
  
Coefficients:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Estimate	
  Std.	
  Error	
  t	
  value	
  Pr(>|t|)	
  	
  	
  	
  	
  
(Intercept)	
  -­‐3.833e+03	
  	
  1.841e+02	
  -­‐20.815	
  	
  	
  <2e-­‐16	
  ***	
  
t	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3.868e+00	
  	
  1.864e-­‐01	
  	
  20.751	
  	
  	
  <2e-­‐16	
  ***	
  
t2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐9.748e-­‐04	
  	
  4.718e-­‐05	
  -­‐20.660	
  	
  	
  <2e-­‐16	
  ***	
  
sin.t	
  	
  	
  	
  	
  	
  	
  -­‐1.078e-­‐01	
  	
  7.679e-­‐03	
  -­‐14.036	
  	
  	
  <2e-­‐16	
  ***	
  
cos.t	
  	
  	
  	
  	
  	
  	
  -­‐1.246e-­‐02	
  	
  7.669e-­‐03	
  	
  -­‐1.624	
  	
  	
  	
  0.105	
  	
  	
  	
  	
  
-­‐-­‐-­‐	
  
Signif.	
  codes:	
  	
  0	
  ‘***’	
  0.001	
  ‘**’	
  0.01	
  ‘*’	
  0.05	
  ‘.’	
  0.1	
  ‘	
  ’	
  1	
  	
  
	
  
Residual	
  standard	
  error:	
  0.1184	
  on	
  471	
  degrees	
  of	
  freedom	
  
Multiple	
  R-­‐squared:	
  0.8017,	
  Adjusted	
  R-­‐squared:	
  	
  	
  0.8	
  	
  
F-­‐statistic:	
  476.1	
  on	
  4	
  and	
  471	
  DF,	
  	
  p-­‐value:	
  <	
  2.2e-­‐16	
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Figura : Analysis of residuals of model 2 for Log(Beer)
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Statistical Inference

Consider a univariate time series {Xt}, such that:

Xt = µt + εt , εt ∼ N(0, σ2
ε)

µt+1 = µt + ηt , ηt ∼ N(0, σ2
η)

so that {µt} is the trend of the series (not observable) and {Xt} is
the (observable) data.
There are three types of inference commonly discussed in the
literature:

Filtering

Prediction

Smoothing
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Types of Inference

Let Ft = σ(X1,X2, . . . ,Xt) the information available at time t
(inclusive) and assume that the model, as well as its parameters, is
known. Then

Filtering: recover the state variable {µt}, given Ft (i.e.,
remove the measurament errors from the data)

Prediction: forecast µt+h or Xt+h, given Ft (where t is the
forecast origin)

Smoothing: estimate µt given FT , where T > t.
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One simple analogy...

Imagine that you are reading a handwritten note. Then

Filtering: figure out the word you are reading based on
knowledge accumulated from the beginning of the note

Prediction: guess the next word

Smoothing: deciphering a particular word once you have read
through the note.
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In this section...

... We deal, for now, with smoothing!
Notation: X̂t(h) is the estimator of Xt+h given the information up
to time t, Ft .

Idea: each value should be a weighted sum of past
observations

X̂t(1) =
∑∞

i=0 λiXt−i

One possibility: use geometric weights:

λi = α(1− α)i , 0 < α < 1

We call exponential smoothing because the weights decay
exponentially.
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Holt-Winters method

... or double exponential smoothing. Advised to use when there is
a trend in the data.

X̂t(1) = St + γBt

St = αXt + (1− α)(St−1 + Bt−1), with S1 = X1

Bt = β(St − St−1) + (1− β)Bt−1, withB1 = X1 − X0
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Smoothing of beer data
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Figura : Double exponential smoothing of beer data, with
α = 0.07532, β = 0.07435 and γ = 0.14388
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Prediction using smoothing

Time

be
er

1960 1970 1980 1990 2000

10
0

15
0

20
0

Figura : Prediction of the next 12 monthly values
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Linear Time Series Models

Cláudia Nunes Time Series in Mathematical Finance



Part I: Introductory principles
Part II: Linear Time Series Models

Part III: More fancy models...

Introduction to ARMA models
Properties of stationary ARMA models
Identification
Prediction
Conditions for Stationary ARMA’s

Building block: white noise

The building block for the analysis of time series is the white noise
process, hereby denoted by {εt}. In the least general case:

εt ∼ N(0, σ2
ε)

which has the following trivial but important consequences:

E [εt |Ft−1] = 0,∀t (stationary in mean)

E [εtεt−j ] = Cov(εt , εt−j) = 0

Var [εt |Ft−1] = σ2
ε ,∀t (conditional homoskedacity)
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White noise in practice

The sample ACFs should be close to zero

The sample PACFs should be close to zero

The sequence of observations should be random, without any
visible pattern
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Can you check which one is a sample-path of a white
noise?
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An example of a white noise
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Figura : Data, sample acf and sample pacf
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An example of a non-white noise
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Linear time series

By itself, {εt} is a pretty boring process. If εt is unusually high,
there is no tendency for εt+1 to be unusually high or low, so it
does not capture the interesting property of persistence that
motivates the study of time series. More realistic models are
constructed by taking combinations of {εt}.

In particular, one such class of models are the Linear Time Series.

A time series {Xt} is said to be linear if it can be written as:

Xt = µ+
∞∑
i=0

ψiεt−i
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Some properties

Stationarity

E [Xt ] = µ; Var [Xt ] = σ2
ε

∞∑
i=0

ψ2
i

Because Var [Xt ] <∞, {ψ2
i } must be a convergent sequence,

i.e., ψ2
i → 0 when i →∞.

Therefore, for such a stationary series, the impact of the
remote shock εt−i on Xt vanishes as i increases.
the lag-l autocovariance and autocorrelation:

γl = Cov(Xt ,Xt+l) = ... = σ2
ε

∞∑
i=0

ψiψi+l

ρl = Corr(Xt ,Xt+l) =

∑∞
i=0 ψiψi+l∑∞

i=0 ψ
2
i
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Basic ARMA models

There are special linear time series models, the usually called
ARMA models; for example:

AR(1) : Xt = φXt−1 + εt

MA(1) : Xt = εt + θεt−1

AR(p) : Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt

MA(q) : Xt = εt + θ1εt−1 + . . .+ θqεt−q

ARMA(p, q) : Xt = φ1Xt−1 + . . .+ φpXt−p︸ ︷︷ ︸
AR(p)

+ εt + . . .+ θqεt−q︸ ︷︷ ︸
MA(q)
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All these models are zero-mean, and are used to represent
deviations of the series about a mean.
If a series has mean X̄ and if it is an AR(1), then:

(Xt − X̄ ) = φ(Xt−1 − X̄ ) + εt ⇔ Xt = (1− φ)X̄ + φXt−1 + εt

So we can assume mean zero, since adding means and
deterministic trends is trivial...
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Lag operators and polynomials

It is easier to represent and manipulate ARMA models in
lag-operation notation.

L operator: LXt = Xt−1 (moves the index back one time unit)

Lj operator: LjXt = Xt−j

∆ operator: ∆Xt = Xt − Xt−1 = (1− L)Xt

Using this notation:

AR : a(L)Xt = εt

MA : Xt = b(L)εt

ARMA : a(L)Xt = b(L)εt
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Relationship between AR and MA models

We can manipulate the models as follows:

AR(1) to MA(∞) by recursive substitution:

Xt = φXt−1 + εt = φ(φXt−2 + εt−1) + εt

= φ2Xt−2 + φεt−1 + εt

= . . .

= φkXt−k +
k−1∑
j=0

φjεt−j

=
∞∑
j=0

φjεt−j

if |φ| < 1.
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AR(1) to MA(∞) with lag polynomials:

(1− φL)Xt = εt ⇔ Xt = (1− φL)−1εt

= (1 + φL + φ2L2 + . . .)εt

=
∞∑
j=0

φjεt−j

This operation is not always admissible. If |φ| < 1 then we say
that the model is stationary.
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AR(2) to MA(∞):

Xt = φ1Xt−1 + φ2Xt−2 + εt ⇔ (1− φ1L− φ2L2)Xt = εt

⇔ (1− λ1L)(1− λ2L)Xt = εt ⇔ Xt = (1− λ1L)−1(1− λ2L)−1εt

=

 ∞∑
j=0

λj1Lj

 ∞∑
j=0

λj2Lj

 εt

if |φ1| < 1, as well as for φ2.
Is there a simpler way to compute this? YES...
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Note that:

1

(1− λ1L)(1− λ2L)
=

a

(1− λ1L)
+

b

(1− λ2L)

with a + b = 1⇔ λ2a + λ1b = 0. So:

a =
λ1

λ1 + λ2
; b =

λ2

λ1 + λ2

and therefore:

Xt =
∞∑
j=0

(
λ1

λ1 + λ2
λj1 +

λ2

λ1 + λ2
λj2

)
εt−j
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Due to the latter, one can prove that the AR(2) is if and only if

φ2 + φ1 < 1

φ2 − φ1 < 1

−1 < φ2 < 1
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MA(q) to AR(∞):
Using the same procedure as in the AR case:

Xt = b(L)εt ⇔ b−1(L)Xt = εt

When the operation is possible, we say that the model is invertible.
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Summary of allowed lag manipulations

You can play with these lag-polynomials as if L would be a
number!

You can multiple them:
a(L)b(L) = a0b0 + (a1b0 + a0b1)L + . . .

They commute: a(L)b(L) = b(L)a(L)

You can raise them to positive powers: a2(L) = a(L)a(L)

You can invert them, starting by
factoring:a−1(L) = c1

1−λ1L
+ c2

1−λ2L
+ . . .
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AR(1)

Xt = φXt−1 + εt ⇔ Xt =
∞∑
i=0

φiεt−i

E [Xt ] = E [
∑∞

i=0 φ
iεt−i ] = 0

Var [Xt ] = Var [
∑∞

i=0 φ
iεt−i ] = σ2

ε

1−φ2

ρl = Corr(Xt ,Xt+l) = ρl .

PACF: for k ≥ 2, it is zero! (so only φ11 = ρ1 = φ 6= 0)
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AR(1)
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Figura : ACF and PACF for an AR(1), with φ = 0.7, and ACF for an
AR(1), with φ = −0.7
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AR(2): Xt = φ1Xt−1 + φ2Xt−2 + εt

As the model is stationary (under some assumptions...), we
have that E [Xt ] = E [Xt−1] = E [Xt−2]. Therefore:

E [Xt ] = φ1[Xt−1] + φ2E [Xt−2]⇒ E [Xt ] = 0

Regarding the covariance:

ρ1 = Corr(Xt ,Xt−1) = φ1 + φ2ρ1 ⇔ ρ1 = φ1

1−φ2

ρk = Corr(Xt ,Xt−k) = φ1ρk−1 + φ2ρk−2, k ≥ 2 (the moment
equation)

Can we solve it in a simple way?
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Linear Difference Equations

Linear difference equations play an important role in the time
series models because the relationship between {Xt} and {εt} is in

the form of a
→ Linear Difference Equation Models.

General nth-order linear difference equation:

C0Xt + C1Xt−1 + . . .+ CnXt−n = εt

(Ci are constants; set, w.l.g, C0 = 1) The above equation is
said to be nonhomogeneous if εt = 0; otherwise it is said
homogeneous.
Let C (L) = (1 + C1L + . . .+ CnLn). The equation

C (L)Xt = 0

is called the auxiliary equation.
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Solution of Linear Difference Equations

Case 1: the auxiliary equation has only one root, with multiplicity
m

Let (1− L)mXt = 0. Then a general solution is given by

Xt =
m−1∑
j=0

bj t
j

Let (1− aL)mXt = 0, with a 6= 1. Then a general solution is
given by

Xt =
m−1∑
j=0

bj t
jat
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Case 2: the auxiliary equation has has more than one root

Let C (L)Xt = 0. If C (L) =
∏N

i=1(1− RiL)mi , with∑M
i=1 mi = n, then

Xt =
N∑
i=1

mi−1∑
j=0

bij t
jRt

i

In particular, if mi = 1 and Ri are all distint, then

Xt =
n∑

i=1

biR
t
i
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Solution of the autocorrelation-function

How do we solve the second order difference equation:

(1− φ1L− φ2L2)ρl = 0?

Factorize the polynomial
(1− φ1L− φ2L2) = (1− λ1L)× (1− λ2L)

In general, the solution to the difference equation is given by:

ρk = a1λ
k
1 + a2λ

k
2 =

λ1(1− λ2
2)λk1 − λ2(1− λ2

1)λk2
(λ1 − λ2)(1 + λ1λ2)

In case λ1 and λ2 are real valued and different, the ACF
consists of two damped exponentials. If they are complex, the
series is said to behave pseudo-periodic.
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Figura : ACF AR(2): (i)(1− 0.5L)2, (ii) complex roots; (iii) stationary;
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PACF

Easy: it is zero for all k ≥ 3!

Cláudia Nunes Time Series in Mathematical Finance



Part I: Introductory principles
Part II: Linear Time Series Models

Part III: More fancy models...

Introduction to ARMA models
Properties of stationary ARMA models
Identification
Prediction
Conditions for Stationary ARMA’s

0 5 10 15 20 25 30

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Index

A
R

M
A

ac
f(c

(1
, -

0.
5)

, 0
, 3

0,
 p

ac
f =

 "t
ru

e"
)

0 5 10 15 20 25 30

-0
.4

-0
.2

0.
0

0.
2

0.
4

Index

A
R

M
A

ac
f(c

(0
.6

, -
0.

4)
, 0

, 3
0,

 p
ac

f =
 "t

ru
e"

)

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Index

A
R

M
A

ac
f(c

(0
.5

, 0
.0

6)
, 0

, 3
0,

 p
ac

f =
 "t

ru
e"

)

Figura : PACF AR(2): (i)(1− 0.5L)2, (ii) complex roots; (iii) stationary
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MA(k): Xt = (1− φ1L− φ2L
2 − . . .− φkL

k)εt

E [Xt ] = 0

The ACF is zero for all lags ≥ (k + 1):

ρq =

cc
−θq+

∑k
i=1 θiθi+q

1+
∑k

i=1 θ
2
i

k ≤ q

0 k > q

The partial correlation function behaves as the corresponding
ACF for the AR(k) (expressions are too involved!; see the
Yule-Walker equations)

So the behaviours of the ACF and PACF of the MA(k) are the
same as the ones for the PACF and ACF of the AR(k).
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ARMA(1): Xt = φXt−1 + θ1εt−1 + εt

Properties of ARMA(1,1) models are generalizations of those of
AR(1) models, with some minor modifications to handle the
impact of the MA(1) component,

E [Xt ] = 0

Var [Xt ] =
(1+θ2

1−2φ1θ1)σ2
ε

1−φ2
1

ρ1 = φ1 − θ1σ
2
ε

Var [Xt ]
and ρl = φ1ρl−1 Thus the ACF behaves

very much like that of an AR(1).

The PACF does not cut off at any finite lag, and it behaves
very much like that of an MA(1).
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Identifying ARMA models in practice

The order p of an AR and q of the MA time series are unknown,
and must be specified empirically (order determination).
There are two ways of doing so:

Use empirical ACF and PACF

Use some information criterion function (AIC or BIC)
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Use of ACF and PACF

To identify a reasonable appropriate ARMA model, we need a
minimun of 50 observations;

The number of sample ACF and PACF should be about T
4 ;

Match the patterns in the sample ACF and PACF with the
theoretical ones.

Process ACF PACF

AR(p) Tails of as exponential Cuts off after lag p
decay or damped sine wave

MA(q) Cuts off after lag q Tails of as exponential
decay or damped sine wave

ARMA(p, q) Tails off after lag (p − q) Tails off after lag (p − q)
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Some good advices

In the initial model identification, concentrate on the general
broad features of the sample ACF and PACF without focusing
on details.

Use a conservative threshold of 1.5 standard deviations in the
significance of short-term lags ACF and PACF, specially whe
using short series.
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Information Criteria

There are two information criteria usually used, both likelihood
based...

Akaike information criterion (AIC):

AIC = ln(σ̂ε
2) +

2(p + q)

T

(where σ̂ε
2) is the m.l.e. of σ2

ε , T is the sample size))

Bayesian information criterion (BIC):

BIC = ln(σ̂ε
2) +

(p + q) ln(T )

T

The penalty for each parameter used is 2 for AIC and ln(T ) for
BIC. Thus BIC tends to select a lower ARMA model, when the
sample size is moderate or large.
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Going back to the TUI data....
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We try three models: ARMA(1,1), AR(1), AR(3)
ARMA(1,1):

Xt = 0.544Xt−1 − 0.466εt−1 + εt

Standardized Residuals
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AR(1):
Xt = 0.067Xt−1 + εt

Standardized Residuals
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AR(3):

Xt = 0.058Xt−1 + 0.058Xt−2 + 0.080Xt−3εt

Standardized Residuals
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ARMA(1,1): AIC=1500.3
AR(3): AIC=1500.68
AR(1): AIC=1492.52
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Notation

One of the most interesting things to do with an ARMA model is
to predict future values, given the past.
Notation:

Predictor of Xt+l : X̂t(l) = E [Xt+l |Xt ,Xt−1, . . . , εt , εt−1, . . .]

Variance of the predictor:
Vart(l) = Var [Xt+l |Xt ,Xt−1, . . . , εt , εt−1, . . .]

Let Ft = σ(Xt ,Xt−1, . . . , εt , εt−1, . . .).
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Confidence Intervals for the forecast

The forecast error is given by:

et(l) = Xt+l − X̂t(l)

with variance given by:

Var [et(l)] = σ2
ε

l−1∑
j=0

ψ2
j

where ψj is the of εt+l−j in the MA(∞) representation.
Then the (1− α)× 100% forecast limits are:

X̂t(l)± Φ−1(1− α

2)
)
√

Var [et(l)]
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Eventual forecast functions

Solve the usual auxiliary function a(L)X̂t(l) = 0 (the same one
as you need to solve in order to get the MA(∞) and the ACF).

As we have seen previously, the general solution to this
equation is (see case 2, for instance):

X̂t(l) =
N∑
i=1

(

mi−1∑
j=0

cij l
jR l

i
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Predicting AR(1)

Xt+1 = φXt + εt

Now apply conditionl expected value:

X̂t(1) = φXt

X̂t(2) = E [φXt+1|Ft ] = φX̂t(1) = φ2Xt

X̂t(k) = φX̂t(k − 1) = φkXt

Notice that
lim
k→∞

X̂t(k) = 0
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Regarding the variance of the predictors:

Vart(1) = Var [Xt+1|Ft ] = Var [φXt + σ2
ε ] = σ2

ε

Vart(2) = Var [φ2Xt + φXt+1 + εt+1|Ft ] =
Var [φXt+1 + εt+1] = (1 + φ2)σ2

ε

Vart(k) =
∑k−1

i=0 φ
2σ2
ε
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Predicting MA

Xt+1 = θ1εt−1 + θ2εt−2 + . . .+ εt

Forecasting MA models is similarly easy as in the AR models.

X̂t(1) =
∑∞

i=1 θiεt−i+1

X̂t(k) =
∑∞

i=k θiεt−i+k

Vart(1) = σ2
ε

Vart(k) = (1 + θ2
1 + . . .+ θ2

k−1)σ2
ε
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Predicting AR’s and MA

Xt+1 = φ1Xt + φ2Xt−2 + . . .+ θ1εt−1 + θ2εt−2 + . . .+ εt

Exploit the facts that:

E [εt+j |Ft ] = 0, Var [εt+j |Ft ] = σ2
ε

For that, express Xt+j as the following sum:

Xt+j = {function ofεt+j , εt+j−1, . . .}+ {function ofεt , εt−1, . . .}

It is easier to express forecasts of AR’s and ARMA’s by inverting to
their MA(∞).
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Which ARMA processes are stationary?

MA processes: Xt =
∑∞

j=0 θjεt−j ⇒ Var [Xt ] =
∑∞

j=0 θ
2
j σ

2
ε

then

MA processes are stationary⇔
∞∑
j=0

θ2
j

AR(1): converting to an MA(∞), we get
Xt =

∑k
j=0 φ

jεt−j + φkXt−k . So

AR(1) is stationary⇔ |φ| < 1

AR processes: considering the MA(∞) representation, given
by (1− λ1L)(1− λ2L) . . .Xt = εt , then:

AR(p) is stationary⇔ |λi | < 1, ∀i
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ARIMA models

A homogeneous nonstationary time series can be reduce to a
stationary time series by taking a proper degree of differencing.

This leads to a new class of models: the autoregressive
integrated moving average models, the ARIMA class.

Model equation for an ARIMA (p, d , q):

ap(L)(1− L)dXt = bq(L)εt

Then the new series {Yt = (1− L)dXt} is an ARMA(p, q)
model. Work this series and then go back to the original one,
by simple transformation.
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SARIMA models

Many business and economic time series contain a seasonal
phenomenon that repeats itself after a regular period of time.
The smallest period for this repetitive phenomenon is called
the seasonal period.
If one believes that the seasonal, trend and irregular are
additive, then one may perform a decomposition of the data,
as illustrated before.

Xt = Tt + St + εt

But usually the seasonal component is not independent of the
other nonseasonal components. So we need to extend the
ARIMA models in order to take into account the seasonality.

SARIMA(p, d , q)(P,D,Q)s :

aP(Ls)ap(L)(1− L)d(1− Ls)DXt = bQ(Ls)bq(L)εt
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Example

A realization of a series with seasonality 12...
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Cláudia Nunes Time Series in Mathematical Finance



Part I: Introductory principles
Part II: Linear Time Series Models

Part III: More fancy models...

Seasonal Time Series Models
GARCH models

If we fit a nonseasonal ARIMA model...

Standardized Residuals
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Model identification

SARIMA(p, d , q)(P,D,Q)s :

aP(Ls)ap(L)(1− L)d(1− Ls)DXt = bQ(Ls)bq(L)εt

Start by identifying the period s; luckily, it will be evident
from the data and from the sample ACF...

Probably you need to perform regular differencing (1− L) and
seasonal differencing (1− Ls).

Compute the ACF and PACF from {(1− L)d(1− Ls)DXt}.
Check pics for the seasonal component and for the
non-seasonal component, to help identifying the order of the
AR and MA components.

Proceed as with the non-seasonal models.
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Heterocedascity

One of the main assumption assumed so far is that the
variance of the erros is constant.
In many practical applications, this assumption is not realistic
(for example, in financial investment, stock markets volatility
is rarely constant over time)
We need models that incorporate the possibility of a
nonconstant error variance.
Homocedastic model: εt , with Var [εt ] = σ2

Heterocedastic model: ηt = σtεt , with Var [εt ] = 1, and

σ2
t = 1 + θ1η

2
t−1 + θ2η

2
t−2 + . . .+ θsη

2
t−s

Therefore in these models, the error term, that in the homocedastic
model follows a white noise process, follows an AR(s) model.

Autoregressive conditional heterocedasticity model, ARCG(s)
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GARCH

It may also happen that the noise follows an ARMA model:

σ2
t = 1 + φ1σ

2
t−1 + . . . , φrσ

2
t−r + θ1η

2
t−1 + θ2η

2
t−2 + . . .+ θsη

2
t−s

In that case we have a GARCH(r , s).
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